Patents by Inventor Timothy Vasen

Timothy Vasen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230369397
    Abstract: In a method of forming a gate-all-around field effect transistor (GAA FET), a fin structure is formed. The fin structure includes a plurality of stacked structures each comprising a dielectric layer, a CNT over the dielectric layer, a support layer over the CNT. A sacrificial gate structure is formed over the fin structure, an isolation insulating layer is formed, a source/drain opening is formed by patterning the isolation insulating layer, the support layer is removed from each of the plurality of stacked structures in the source/drain opening, and a source/drain contact layer is formed in the source/drain opening. The source/drain contact is formed such that the source/drain contact is in direct contact with only a part of the CNT and a part of the dielectric layer is disposed between the source/drain contact and the CNT.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Matthias PASSLACK, Marcus Johannes Henricus VAN DAL, Timothy VASEN, Georgios VELLIANITIS
  • Publication number: 20230361202
    Abstract: In a method of manufacturing a semiconductor device, a dummy gate structure is formed over a channel region of a semiconductor layer, a source/drain epitaxial layer is formed on opposing sides of the dummy gate structure, a planarization operation is performed on the source/drain epitaxial layer, the planarized source/drain epitaxial layer is patterned, the dummy gate structure is removed to form a gate space, and a metal gate structure is formed in the gate space.
    Type: Application
    Filed: July 20, 2023
    Publication date: November 9, 2023
    Inventors: Blandine DURIEZ, Georgios Vellianitis, Gerben Doornbos, Marcus Johannes Henricus, Martin Christopher Holland, Timothy Vasen
  • Patent number: 11769798
    Abstract: In a method of forming a gate-all-around field effect transistor (GAA FET), a fin structure is formed. The fin structure includes a plurality of stacked structures each comprising a dielectric layer, a CNT over the dielectric layer, a support layer over the CNT. A sacrificial gate structure is formed over the fin structure, an isolation insulating layer is formed, a source/drain opening is formed by patterning the isolation insulating layer, the support layer is removed from each of the plurality of stacked structures in the source/drain opening, and a source/drain contact layer is formed in the source/drain opening. The source/drain contact is formed such that the source/drain contact is in direct contact with only a part of the CNT and a part of the dielectric layer is disposed between the source/drain contact and the CNT.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: September 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Matthias Passlack, Marcus Johannes Henricus Van Dal, Timothy Vasen, Georgios Vellianitis
  • Publication number: 20230301120
    Abstract: The current disclosure describes techniques for forming semiconductor structures having multiple semiconductor strips configured as channel portions. In the semiconductor structures, diffusion break structures are formed after the gate structures are formed so that the structural integrity of the semiconductor strips adjacent to the diffusion break structures will not be compromised by a subsequent gate formation process. The diffusion break extends downward from an upper surface until all the semiconductor strips of the adjacent channel portions are truncated by the diffusion break.
    Type: Application
    Filed: May 3, 2023
    Publication date: September 21, 2023
    Inventors: Marcus Johannes Henricus Van Dal, Timothy Vasen, Gerben Doornbos
  • Patent number: 11764289
    Abstract: In a method of manufacturing a semiconductor device, a dummy gate structure is formed over a channel region of a semiconductor layer, a source/drain epitaxial layer is formed on opposing sides of the dummy gate structure, a planarization operation is performed on the source/drain epitaxial layer, the planarized source/drain epitaxial layer is patterned, the dummy gate structure is removed to form a gate space, and a metal gate structure is formed in the gate space.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: September 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Blandine Duriez, Georgios Vellianitis, Gerben Doornbos, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Timothy Vasen
  • Publication number: 20230276640
    Abstract: In a method of forming a gate-all-around field effect transistor, a gate structure is formed surrounding a channel portion of a carbon nanotube. An inner spacer is formed surrounding a source/drain extension portion of the carbon nanotube, which extends outward from the channel portion of the carbon nanotube. The inner spacer includes two dielectric layers that form interface dipole. The interface dipole introduces doping to the source/drain extension portion of the carbon nanotube.
    Type: Application
    Filed: May 3, 2023
    Publication date: August 31, 2023
    Inventors: Marcus Johannes Henricus VAN DAL, Timothy VASEN, Gerben DOORNBOS
  • Patent number: 11728418
    Abstract: The current disclosure describes a tunnel FET device including a P-I-N heterojunction structure. A high-K dielectric layer and a metal gate wrap around the intrinsic channel layer with an interlayer positioned between high-K dielectric layer and the intrinsic channel layer of the P-I-N heterojunction. The interlayer prevents charge carriers from reaching the interface with high-K dielectric layer under the trap-assisted tunneling effect and reduces OFF state leakage.
    Type: Grant
    Filed: May 3, 2022
    Date of Patent: August 15, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Timothy Vasen, Gerben Doornbos, Matthias Passlack
  • Patent number: 11659721
    Abstract: In a method of forming a gate-all-around field effect transistor, a gate structure is formed surrounding a channel portion of a carbon nanotube. An inner spacer is formed surrounding a source/drain extension portion of the carbon nanotube, which extends outward from the channel portion of the carbon nanotube. The inner spacer includes two dielectric layers that form interface dipole. The interface dipole introduces doping to the source/drain extension portion of the carbon nanotube.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: May 23, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Timothy Vasen, Marcus Johannes Henricus Van Dal, Gerben Doornbos
  • Patent number: 11653507
    Abstract: The current disclosure describes techniques for forming semiconductor structures having multiple semiconductor strips configured as channel portions. In the semiconductor structures, diffusion break structures are formed after the gate structures are formed so that the structural integrity of the semiconductor strips adjacent to the diffusion break structures will not be compromised by a subsequent gate formation process. The diffusion break extends downward from an upper surface until all the semiconductor strips of the adjacent channel portions are truncated by the diffusion break.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: May 16, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Marcus Johannes Henricus Van Dal, Timothy Vasen, Gerben Doornbos
  • Patent number: 11557726
    Abstract: Provided herein are wafers that can be used to align carbon nanotubes, as well as methods of making and using the same. Such wafers include alignment areas that have four sides and a surface charge, where the alignment areas are surrounded by areas that have a surface charge of a different polarity. Methods of the disclosure may include depositing and selectively etching a number of hardmasks on a substrate. The described methods may also include depositing a carbon nanotube on such a wafer.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: January 17, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Timothy Vasen, Marcus Johannes Henricus Van Dal, Gerben Doornbos, Matthias Passlack
  • Publication number: 20220367824
    Abstract: In a method of forming a gate-all-around field effect transistor (GAA FET), a bottom support layer is formed over a substrate and a first group of carbon nanotubes (CNTs) are disposed over the bottom support layer. A first support layer is formed over the first group of CNTs and the bottom support layer such that the first group of CNTs are embedded in the first support layer. A second group of carbon nanotubes (CNTs) are disposed over the first support layer. A second support layer is formed over the second group of CNTs and the first support layer such that the second group of CNTs are embedded in the second support layer. A fin structure is formed by patterning at least the first support layer and the second support layer.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 17, 2022
    Inventors: Timothy VASEN, Mark VAN DAL, Gerben DOORNBOS, Matthias PASSLACK
  • Patent number: 11437594
    Abstract: In a method of forming a gate-all-around field effect transistor (GAA FET), a bottom support layer is formed over a substrate and a first group of carbon nanotubes (CNTs) are disposed over the bottom support layer. A first support layer is formed over the first group of CNTs and the bottom support layer such that the first group of CNTs are embedded in the first support layer. A second group of carbon nanotubes (CNTs) are disposed over the first support layer. A second support layer is formed over the second group of CNTs and the first support layer such that the second group of CNTs are embedded in the second support layer. A fin structure is formed by patterning at least the first support layer and the second support layer.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: September 6, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Timothy Vasen, Mark Van Dal, Gerben Doornbos, Matthias Passlack
  • Publication number: 20220262936
    Abstract: The current disclosure describes a tunnel FET device including a P-I-N heterojunction structure. A high-K dielectric layer and a metal gate wrap around the intrinsic channel layer with an interlayer positioned between high-K dielectric layer and the intrinsic channel layer of the P-I-N heterojunction. The interlayer prevents charge carriers from reaching the interface with high-K dielectric layer under the trap-assisted tunneling effect and reduces OFF state leakage.
    Type: Application
    Filed: May 3, 2022
    Publication date: August 18, 2022
    Inventors: Timothy Vasen, Gerben Doornbos, Matthias Passlack
  • Patent number: 11411103
    Abstract: The current disclosure describes a tunnel FET device including a P-I-N heterojunction structure. A high-K dielectric layer and a metal gate wrap around the intrinsic channel layer with an interlayer positioned between high-K dielectric layer and the intrinsic channel layer of the P-I-N heterojunction. The interlayer prevents charge carriers from reaching the interface with high-K dielectric layer under the trap-assisted tunneling effect and reduces OFF state leakage.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: August 9, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Timothy Vasen, Gerben Doornbos, Matthias Passlack
  • Publication number: 20220190252
    Abstract: A method includes placing a first charged metal dot on a first position of a surface of a semiconductor substrate. A first charged region is formed on a second position of the surface of the semiconductor substrate. A precursor gas is flowed along a first direction from the first position toward the second position on the semiconductor substrate, thereby forming a first carbon nanotube (CNT) on the semiconductor substrate. A dielectric layer is deposited to cover the first CNT and the semiconductor substrate. A second charged metal dot is placed on a third position of a surface of the dielectric layer. A second charged region is formed on a fourth position of the surface of the dielectric layer. The precursor gas is flowed along a second direction from the third position toward the fourth position on the semiconductor substrate, thereby forming a second CNT on the first CNT.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Martin Christopher HOLLAND, Timothy VASEN, Blandine DURIEZ
  • Publication number: 20220181565
    Abstract: The current disclosure describes techniques for forming semiconductor structures having multiple semiconductor strips configured as channel portions. In the semiconductor structures, diffusion break structures are formed after the gate structures are formed so that the structural integrity of the semiconductor strips adjacent to the diffusion break structures will not be compromised by a subsequent gate formation process. The diffusion break extends downward from an upper surface until all the semiconductor strips of the adjacent channel portions are truncated by the diffusion break.
    Type: Application
    Filed: February 24, 2022
    Publication date: June 9, 2022
    Inventors: Marcus Johannes Henricus Van Dal, Timothy Vasen, Gerben Doornbos
  • Patent number: 11349022
    Abstract: The current disclosure describes a tunnel FET device including a P-I-N heterojunction structure. A high-K dielectric layer and a metal gate wrap around the intrinsic channel layer with an interlayer positioned between high-K dielectric layer and the intrinsic channel layer of the P-I-N heterojunction. The interlayer prevents charge carriers from reaching the interface with high-K dielectric layer under the trap-assisted tunneling effect and reduces OFF state leakage.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: May 31, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Timothy Vasen, Gerben Doornbos, Matthias Passlack
  • Patent number: 11276832
    Abstract: The current disclosure describes techniques for forming semiconductor structures having multiple semiconductor strips configured as channel portions. In the semiconductor structures, diffusion break structures are formed after the gate structures are formed so that the structural integrity of the semiconductor strips adjacent to the diffusion break structures will not be compromised by a subsequent gate formation process. The diffusion break extends downward from an upper surface until all the semiconductor strips of the adjacent channel portions are truncated by the diffusion break.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: March 15, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Marcus Johannes Henricus van Dal, Timothy Vasen, Gerben Doornbos
  • Patent number: 11271163
    Abstract: In a method, a charged metal dot is deposited on a first position of a surface of a semiconductor substrate. Then, a charged region is formed on a second position of the surface of the semiconductor substrate, thereby establishing of which an electric field direction from the first position toward the second position. The first position is spaced apart from the second position by a distance. Thereafter, a precursor gas flows along the electric field direction on the semiconductor substrate, thereby forming a carbon nanotube (CNT) on the semiconductor substrate.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: March 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Martin Christopher Holland, Timothy Vasen, Blandine Duriez
  • Publication number: 20220052283
    Abstract: In a method of forming a gate-all-around field effect transistor (GAA FET), a fin structure including CNTs embedded in a semiconductor layer is formed, a sacrificial gate structure is formed over the fin structure, the semiconductor layer is doped at a source/drain region of the fin structure, an isolation insulating layer is formed, a source/drain opening is formed by patterning the isolation insulating layer, and a source/drain contact layer is formed over the doped source/drain region of the fin structure.
    Type: Application
    Filed: November 1, 2021
    Publication date: February 17, 2022
    Inventors: Gerben DOORNBOS, Marcus Johannes Henricus VAN DAL, Timothy VASEN