Patents by Inventor Timothy Vasen

Timothy Vasen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210376079
    Abstract: In a method of forming a gate-all-around field effect transistor (GAA FET), a fin structure is formed. The fin structure includes a plurality of stacked structures each comprising a dielectric layer, a CNT over the dielectric layer, a support layer over the CNT. A sacrificial gate structure is formed over the fin structure, an isolation insulating layer is formed, a source/drain opening is formed by patterning the isolation insulating layer, the support layer is removed from each of the plurality of stacked structures in the source/drain opening, and a source/drain contact layer is formed in the source/drain opening. The source/drain contact is formed such that the source/drain contact is in direct contact with only a part of the CNT and a part of the dielectric layer is disposed between the source/drain contact and the CNT.
    Type: Application
    Filed: August 9, 2021
    Publication date: December 2, 2021
    Inventors: Matthias PASSLACK, Marcus Johannes Henricus VAN DAL, Timothy VASEN, Georgios VELLIANITIS
  • Publication number: 20210343958
    Abstract: In a method of forming a gate-all-around field effect transistor, a gate structure is formed surrounding a channel portion of a carbon nanotube. An inner spacer is formed surrounding a source/drain extension portion of the carbon nanotube, which extends outward from the channel portion of the carbon nanotube. The inner spacer includes two dielectric layers that form interface dipole. The interface dipole introduces doping to the source/drain extension portion of the carbon nanotube.
    Type: Application
    Filed: July 13, 2021
    Publication date: November 4, 2021
    Inventors: Timothy VASEN, Marcus Johannes Henricus VAN DAL, Gerben DOOMBOS
  • Patent number: 11165032
    Abstract: In a method of forming a gate-all-around field effect transistor (GAA FET), a fin structure including carbon nanotubes (CNTs) embedded in a semiconductor layer is formed, a sacrificial gate structure is formed over the fin structure, the semiconductor layer is doped at a source/drain region of the fin structure, an interlayer dielectric (ILD) layer is formed over the doped source/drain region and the sacrificial gate structure, a source/drain opening is formed by patterning the ILD layer, and a source/drain contact layer is formed over the doped source/drain region of the fin structure.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: November 2, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Gerben Doornbos, Marcus Johannes Henricus Van Dal, Timothy Vasen
  • Patent number: 11158807
    Abstract: A field effect transistor includes a semiconductor substrate, a first pad layer, carbon nanotubes and a gate structure. The first pad layer is disposed over the semiconductor substrate and comprises a 2D material. The carbon nanotubes are disposed over the first insulating pad layer. The gate structure is disposed over the semiconductor substrate and is vertically stacked with the carbon nanotubes. The carbon nanotubes extend from one side to an opposite side of the gate structure.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: October 26, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Timothy Vasen, Chao-Ching Cheng, Matthias Passlack, Martin Christopher Holland, Tse-An Chen, Lain-Jong Li
  • Publication number: 20210265490
    Abstract: In a method of manufacturing a semiconductor device, a dummy gate structure is formed over a channel region of a semiconductor layer, a source/drain epitaxial layer is formed on opposing sides of the dummy gate structure, a planarization operation is performed on the source/drain epitaxial layer, the planarized source/drain epitaxial layer is patterned, the dummy gate structure is removed to form a gate space, and a metal gate structure is formed in the gate space.
    Type: Application
    Filed: May 10, 2021
    Publication date: August 26, 2021
    Inventors: Blandine DURIEZ, Georgios VELLIANITIS, Gerben DOORNBOS, Marcus Johannes Henricus VAN DAL, Martin Christopher HOLLAND, Timothy VASEN
  • Patent number: 11088337
    Abstract: In a method of forming a gate-all-around field effect transistor, a gate structure is formed surrounding a channel portion of a carbon nanotube. An inner spacer is formed surrounding a source/drain extension portion of the carbon nanotube, which extends outward from the channel portion of the carbon nanotube. The inner spacer includes two dielectric layers that form interface dipole. The interface dipole introduces doping to the source/drain extension portion of the carbon nanotube.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: August 10, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Timothy Vasen, Marcus Johannes Henricus Van Dal, Gerben Doornbos
  • Patent number: 11088246
    Abstract: In a method of forming a gate-all-around field effect transistor (GAA FET), a fin structure is formed. The fin structure includes a plurality of stacked structures each comprising a dielectric layer, a CNT over the dielectric layer, a support layer over the CNT. A sacrificial gate structure is formed over the fin structure, an isolation insulating layer is formed, a source/drain opening is formed by patterning the isolation insulating layer, the support layer is removed from each of the plurality of stacked structures in the source/drain opening, and a source/drain contact layer is formed in the source/drain opening. The source/drain contact is formed such that the source/drain contact is in direct contact with only a part of the CNT and a part of the dielectric layer is disposed between the source/drain contact and the CNT.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: August 10, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Matthias Passlack, Marcus Johannes Henricus Van Dal, Timothy Vasen, Georgios Vellianitis
  • Patent number: 11004958
    Abstract: In a method of manufacturing a semiconductor device, a dummy gate structure is formed over a channel region of a semiconductor layer, a source/drain epitaxial layer is formed on opposing sides of the dummy gate structure, a planarization operation is performed on the source/drain epitaxial layer, the planarized source/drain epitaxial layer is patterned, the dummy gate structure is removed to form a gate space, and a metal gate structure is formed in the gate space.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: May 11, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Blandine Duriez, Georgios Vellianitis, Gerben Doornbos, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Timothy Vasen
  • Publication number: 20210119131
    Abstract: A field effect transistor includes a semiconductor substrate, a first pad layer, carbon nanotubes and a gate structure. The first pad layer is disposed over the semiconductor substrate and comprises a 2D material. The carbon nanotubes are disposed over the first insulating pad layer. The gate structure is disposed over the semiconductor substrate and is vertically stacked with the carbon nanotubes. The carbon nanotubes extend from one side to an opposite side of the gate structure.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 22, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Timothy Vasen, Chao-Ching Cheng, Matthias Passlack, Martin Christopher Holland, Tse-An Chen, Lain-Jong Li
  • Publication number: 20210074810
    Abstract: In a method of forming a gate-all-around field effect transistor (GAA FET), a fin structure including CNTs embedded in a semiconductor layer is formed, a sacrificial gate structure is formed over the fin structure, the semiconductor layer is doped at a source/drain region of the fin structure, an isolation insulating layer is formed, a source/drain opening is formed by patterning the isolation insulating layer, and a source/drain contact layer is formed over the doped source/drain region of the fin structure.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 11, 2021
    Inventors: Gerben DOORNBOS, Marcus Johannes Henricus VAN DAL, Timothy VASEN
  • Patent number: 10923659
    Abstract: Provided herein are wafers that can be used to align carbon nanotubes, as well as methods of making and using the same. Such wafers include alignment areas that have four sides and a surface charge, where the alignment areas are surrounded by areas that have a surface charge of a different polarity. Methods of the disclosure may include depositing and selectively etching a number of hardmasks on a substrate. The described methods may also include depositing a carbon nanotube on such a wafer.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: February 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Timothy Vasen, Gerben Doornbos, Marcus Johannes Henricus van Dal, Matthias Passlack
  • Publication number: 20210043839
    Abstract: Provided herein are wafers that can be used to align carbon nanotubes, as well as methods of making and using the same. Such wafers include alignment areas that have four sides and a surface charge, where the alignment areas are surrounded by areas that have a surface charge of a different polarity. Methods of the disclosure may include depositing and selectively etching a number of hardmasks on a substrate. The described methods may also include depositing a carbon nanotube on such a wafer.
    Type: Application
    Filed: October 12, 2020
    Publication date: February 11, 2021
    Inventors: Timothy Vasen, Marcus Johannes Henricus Van Dal, Gerben Doornbos, Matthias Passlack
  • Publication number: 20210020745
    Abstract: In a method of forming a gate-all-around field effect transistor (GAA FET), a fin structure is formed. The fin structure includes a plurality of stacked structures each comprising a dielectric layer, a CNT over the dielectric layer, a support layer over the CNT. A sacrificial gate structure is formed over the fin structure, an isolation insulating layer is formed, a source/drain opening is formed by patterning the isolation insulating layer, the support layer is removed from each of the plurality of stacked structures in the source/drain opening, and a source/drain contact layer is formed in the source/drain opening. The source/drain contact is formed such that the source/drain contact is in direct contact with only a part of the CNT and a part of the dielectric layer is disposed between the source/drain contact and the CNT.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 21, 2021
    Inventors: Matthias PASSLACK, Marcus Johannes Henricus VAN DAL, Timothy VASEN, Georgios VELLIANITIS
  • Publication number: 20200411767
    Abstract: A semiconductor device includes a substrate, a nanotube structure, and a gate structure. The nanotube structure is disposed over the substrate. The nanotube structure includes a semiconducting carbon nanotube (s-CNT) and a first insulating nanotube. The first insulating nanotube has an inert surface on the s-CNT. The gate structure includes a first metallic carbon nanotube (m-CNT) over the nanotube structure.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Timothy VASEN
  • Patent number: 10879469
    Abstract: A semiconductor device includes a substrate, a nanotube structure, and a gate structure. The nanotube structure is disposed over the substrate. The nanotube structure includes a semiconducting carbon nanotube (s-CNT) and a first insulating nanotube. The first insulating nanotube has an inert surface on the s-CNT. The gate structure includes a first metallic carbon nanotube (m-CNT) over the nanotube structure.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Timothy Vasen
  • Publication number: 20200358015
    Abstract: In a method of forming a gate-all-around field effect transistor (GAA FET), a bottom support layer is formed over a substrate and a first group of carbon nanotubes (CNTs) are disposed over the bottom support layer. A first support layer is formed over the first group of CNTs and the bottom support layer such that the first group of CNTs are embedded in the first support layer. A second group of carbon nanotubes (CNTs) are disposed over the first support layer. A second support layer is formed over the second group of CNTs and the first support layer such that the second group of CNTs are embedded in the second support layer. A fin structure is formed by patterning at least the first support layer and the second support layer.
    Type: Application
    Filed: July 27, 2020
    Publication date: November 12, 2020
    Inventors: Timothy VASEN, Mark VAN DAL, Gerben DOORNBOS, Matthias PASSLACK
  • Publication number: 20200335701
    Abstract: In a method, a charged metal dot is deposited on a first position of a surface of a semiconductor substrate. Then, a charged region is formed on a second position of the surface of the semiconductor substrate, thereby establishing of which an electric field direction from the first position toward the second position. The first position is spaced apart from the second position by a distance. Thereafter, a precursor gas flows along the electric field direction on the semiconductor substrate, thereby forming a carbon nanotube (CNT) on the semiconductor substrate.
    Type: Application
    Filed: April 18, 2019
    Publication date: October 22, 2020
    Inventors: Martin Christopher HOLLAND, Timothy VASEN, Blandine DURIEZ
  • Publication number: 20200303530
    Abstract: The current disclosure describes a tunnel FET device including a P-I-N heterojunction structure. A high-K dielectric layer and a metal gate wrap around the intrinsic channel layer with an interlayer positioned between high-K dielectric layer and the intrinsic channel layer of the P-I-N heterojunction. The interlayer prevents charge carriers from reaching the interface with high-K dielectric layer under the trap-assisted tunneling effect and reduces OFF state leakage.
    Type: Application
    Filed: June 1, 2020
    Publication date: September 24, 2020
    Inventors: Timothy Vasen, Gerben Doornbos, Matthias Passlack
  • Publication number: 20200287032
    Abstract: The current disclosure describes a tunnel FET device including a P-I-N heterojunction structure. A high-K dielectric layer and a metal gate wrap around the intrinsic channel layer with an interlayer positioned between high-K dielectric layer and the intrinsic channel layer of the P-I-N heterojunction. The interlayer prevents charge carriers from reaching the interface with high-K dielectric layer under the trap-assisted tunneling effect and reduces OFF state leakage.
    Type: Application
    Filed: May 12, 2020
    Publication date: September 10, 2020
    Inventors: Timothy Vasen, Gerben Doornbos, Matthias Passlack
  • Patent number: 10727427
    Abstract: In a method of forming a gate-all-around field effect transistor (GAA FET), a bottom support layer is formed over a substrate and a first group of carbon nanotubes (CNTs) are disposed over the bottom support layer. A first support layer is formed over the first group of CNTs and the bottom support layer such that the first group of CNTs are embedded in the first support layer. A second group of carbon nanotubes (CNTs) are disposed over the first support layer. A second support layer is formed over the second group of CNTs and the first support layer such that the second group of CNTs are embedded in the second support layer. A fin structure is formed by patterning at least the first support layer and the second support layer.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: July 28, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Timothy Vasen, Mark van Dal, Gerben Doornbos, Matthias Passlack