Patents by Inventor Tin-Hao Kuo

Tin-Hao Kuo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190131223
    Abstract: Semiconductor package s and methods of forming the same are disclosed. The semiconductor package includes a chip, a redistribution circuit structure and a UBM pattern. The redistribution circuit structure is disposed over and electrically connected to the chip and includes a topmost conductive pattern. The UBM pattern is disposed over and electrically connected to the topmost conductive pattern, wherein the UBM pattern includes a set of vias and a pad on the set of vias, wherein the vias are arranged in an array and electrically connected to the pad and the topmost conductive pattern.
    Type: Application
    Filed: January 30, 2018
    Publication date: May 2, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Mao-Yen Chang, Hao-Yi Tsai, Kuo-Lung Pan, Tin-Hao Kuo, Tzung-Hui Lee, Teng-Yuan Lo, Hao-Chun Ting
  • Patent number: 10276509
    Abstract: A method for fabricating an integrated fan-out package is provided. The method includes the following steps. A plurality of conductive posts are placed in apertures of a substrate. A carrier having an adhesive thereon is provided. The conductive posts are transferred to the carrier in a standing orientation by adhering the conductive posts in the apertures to the adhesive. An integrated circuit component is mounted onto the adhesive having the conductive posts adhered thereon. An insulating encapsulation is formed to encapsulate the integrated circuit component and the conductive posts. A redistribution circuit structure is formed on the insulating encapsulation, the integrated circuit component, and the conductive posts, wherein the redistribution circuit structure is electrically connected to the integrated circuit component and the conductive posts. The carrier is removed. At least parts of the adhesive are removed (e.g. patterned or entirely removed) to expose surfaces of the conductive posts.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Hao Chang, Hsin-Hung Liao, Hao-Yi Tsai, Chien-Ling Hwang, Wei-Sen Chang, Tsung-Hsien Chiang, Tin-Hao Kuo
  • Publication number: 20190123021
    Abstract: A method for forming through vias comprises the steps of forming a dielectric layer over a package and forming an RDL over the dielectric layer, wherein forming the RDL includes the steps of forming a seed layer, forming a first patterned mask over the seed layer, and performing a first metal plating. The method further includes forming through vias on top of a first portion of the RDL, wherein forming the through vias includes forming a second patterned mask over the seed layer and the RDL, and performing a second metal plating. The method further includes attaching a chip to a second portion of the RDL, and encapsulating the chip and the through vias in an encapsulating material.
    Type: Application
    Filed: December 10, 2018
    Publication date: April 25, 2019
    Inventors: Kuo Lung Pan, Wei Sen Chang, Tin-Hao Kuo, Hao-Yi Tsai, Chung-Shi Liu
  • Patent number: 10269674
    Abstract: A method includes forming a through-via from a first conductive pad of a first device die. The first conductive pad is at a top surface of the first device die. A second device die is adhered to the top surface of the first device die. The second device die has a surface conductive feature. The second device die and the through-via are encapsulated in an encapsulating material. The encapsulating material is planarized to reveal the through-via and the surface conductive feature. Redistribution lines are formed over and electrically coupled to the through-via and the surface conductive feature.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Kuo-Chung Yee, Hao-Yi Tsai, Tin-Hao Kuo
  • Patent number: 10269773
    Abstract: A device is provided, including: a first device package including: a first redistribution structure including a first redistribution line and a second redistribution line; a die on the first redistribution structure; a first via coupled to a first side of the first redistribution line; a second via coupled to a first side of the second redistribution line and extending through the second redistribution line; an encapsulant surrounding the die, the first via, and the second via; and a second redistribution structure over the encapsulant, the second redistribution structure electrically connected to the die, the first via, and the second via; a first conductive connector coupled to a second side of the first redistribution line, the first conductive connector disposed along a different axis than a longitudinal axis of the first via; and a second conductive connector coupled to a second side of the second redistribution line, the second conductive connector disposed along a longitudinal axis of the second via.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Ming Hung Tseng, Yen-Liang Lin, Tzu-Sung Huang, Tin-Hao Kuo, Hao-Yi Tsai
  • Patent number: 10269759
    Abstract: A bump-on-trace (BOT) interconnection in a package and methods of making the BOT interconnection are provided. An embodiment BOT interconnection comprises a landing trace including a distal end, a conductive pillar extending at least to the distal end of the landing trace; and a solder feature electrically coupling the landing trace and the conductive pillar. In an embodiment, the conductive pillar overhangs the end surface of the landing trace. In another embodiment, the landing trace includes one or more recesses for trapping the solder feature after reflow. Therefore, a wetting area available to the solder feature is increased while permitting the bump pitch of the package to remain small.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Liang Lin, Chen-Shien Chen, Tin-Hao Kuo
  • Publication number: 20190103379
    Abstract: A device is provided, including: a first device package including: a first redistribution structure including a first redistribution line and a second redistribution line; a die on the first redistribution structure; a first via coupled to a first side of the first redistribution line; a second via coupled to a first side of the second redistribution line and extending through the second redistribution line; an encapsulant surrounding the die, the first via, and the second via; and a second redistribution structure over the encapsulant, the second redistribution structure electrically connected to the die, the first via, and the second via; a first conductive connector coupled to a second side of the first redistribution line, the first conductive connector disposed along a different axis than a longitudinal axis of the first via; and a second conductive connector coupled to a second side of the second redistribution line, the second conductive connector disposed along a longitudinal axis of the second via.
    Type: Application
    Filed: October 13, 2017
    Publication date: April 4, 2019
    Inventors: Chen-Hua Yu, Ming Hung Tseng, Yen-Liang Lin, Tzu-Sung Huang, Tin-Hao Kuo, Hao-Yi Tsai
  • Publication number: 20190074261
    Abstract: A method includes forming a first through-via from a first conductive pad of a first device die, and forming a second through-via from a second conductive pad of a second device die. The first and second conductive pads are at top surfaces of the first and the second device dies, respectively. The first and the second conductive pads may be used as seed layers. The second device die is adhered to the top surface of the first device die. The method further includes encapsulating the first and the second device dies and the first and the second through-vias in an encapsulating material, with the first and the second device dies and the first and the second through-vias encapsulated in a same encapsulating process. The encapsulating material is planarized to reveal the first and the second through-vias. Redistribution lines are formed to electrically couple to the first and the second through-vias.
    Type: Application
    Filed: November 5, 2018
    Publication date: March 7, 2019
    Inventors: Chen-Hua Yu, Kuo-Chung Yee, Hao-Yi Tsai, Tin-Hao Kuo
  • Patent number: 10163801
    Abstract: Structures and formation methods of a chip package are provided. The chip package includes a semiconductor die having a conductive feature and a protection layer surrounding the semiconductor die. The chip package also includes a dielectric layer arranged over the semiconductor die and the protection layer and partially covering the conductive feature. The conductive feature is arranged accessibly from the protection layer and the dielectric layer. The chip package further includes a conductive layer penetrating through the dielectric layer and electrically connected to the conductive feature of the semiconductor die. The conductive feature has a first portion covered by the dielectric layer and a second portion accessibly exposed from the dielectric layer, and the second portion has a surface roughness greater than that of the first portion.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Horng Chang, Tin-Hao Kuo
  • Patent number: 10163844
    Abstract: A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a substrate including a plurality of conductive traces and a recess filled with a conductive material electrically coupled to at least one of the plurality of conductive traces. The semiconductor structure also includes semiconductor chip. The semiconductor chip includes a plurality of conductive pads correspondingly electrically connected with the plurality of conductive traces through a plurality of conductive bumps. A height of each of the plurality of conductive bumps is determined by a minimum distance between the plurality of conductive pads and the corresponding conductive traces thereof.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: December 25, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yen-Liang Lin, Tin-Hao Kuo, Sheng-Yu Wu, Chen-Shien Chen
  • Patent number: 10157874
    Abstract: A package component includes a dielectric layer and a metal pad over the dielectric layer. A plurality of openings is disposed in the metal pad. The first plurality of openings is separated from each other by portions of the metal pad, with the portions of the metal pad interconnected to form a continuous metal region.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pei-Chun Tsai, Yu-Feng Chen, Tin-Hao Kuo, Chen-Shien Chen, Yu-Chih Huang, Sheng-Yu Wu
  • Publication number: 20180358316
    Abstract: A pillar structure, and a method of forming, for a substrate is provided. The pillar structure may have one or more tiers, where each tier may have a conical shape or a spherical shape. In an embodiment, the pillar structure is used in a bump-on-trace (BOT) configuration. The pillar structures may have circular shape or an elongated shape in a plan view. The substrate may be coupled to another substrate. In an embodiment, the another substrate may have raised conductive traces onto which the pillar structure may be coupled.
    Type: Application
    Filed: August 20, 2018
    Publication date: December 13, 2018
    Inventors: Tin-Hao Kuo, Chen-Shien Chen, Mirng-Ji Lii, Chen-Hua Yu, Sheng-Yu Wu, Yao-Chun Chuang
  • Patent number: 10153243
    Abstract: Semiconductor devices, methods of manufacture thereof, and packaged semiconductor devices are disclosed. A method of forming a device includes forming a conductive trace over a first substrate, the conductive trace having first tapering sidewalls, forming a conductive bump over a second substrate, the conductive bump having second tapering sidewalls and a first surface distal the second substrate, and attaching the conductive bump to the conductive trace via a solder region. The solder region extends from the first surface of the conductive bump to the first substrate, and covers the first tapering sidewalls of the conductive trace. The second tapering sidewalls of the conductive bump are free of the solder region.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: December 11, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Jen Tseng, Yen-Liang Lin, Tin-Hao Kuo, Chen-Shien Chen, Mirng-Ji Lii
  • Patent number: 10153249
    Abstract: A method for forming through vias comprises the steps of forming a dielectric layer over a package and forming an RDL over the dielectric layer, wherein forming the RDL includes the steps of forming a seed layer, forming a first patterned mask over the seed layer, and performing a first metal plating. The method further includes forming through vias on top of a first portion of the RDL, wherein forming the through vias includes forming a second patterned mask over the seed layer and the RDL, and performing a second metal plating. The method further includes attaching a chip to a second portion of the RDL, and encapsulating the chip and the through vias in an encapsulating material.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: December 11, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo Lung Pan, Wei Sen Chang, Tin-Hao Kuo, Hao-Yi Tsai, Chung-Shi Liu
  • Publication number: 20180342435
    Abstract: A method includes forming a through-via from a first conductive pad of a first device die. The first conductive pad is at a top surface of the first device die. A second device die is adhered to the top surface of the first device die. The second device die has a surface conductive feature. The second device die and the through-via are encapsulated in an encapsulating material. The encapsulating material is planarized to reveal the through-via and the surface conductive feature. Redistribution lines are formed over and electrically coupled to the through-via and the surface conductive feature.
    Type: Application
    Filed: August 2, 2018
    Publication date: November 29, 2018
    Inventors: Chen-Hua Yu, Kuo-Chung Yee, Hao-Yi Tsai, Tin-Hao Kuo
  • Patent number: 10128195
    Abstract: A package includes a package substrate, which includes a middle layer selected from the group consisting of a core and a middle metal layer, a top metal layer overlying the middle layer, and a bottom metal layer underlying the middle layer. All metal layers overlying the middle layer have a first total metal density that is equal to a sum of all densities of all metal layers over the middle layer. All metal layers underlying the middle layer have a second total metal density that is equal to a sum of all densities of all metal layers under the middle layer. An absolute value of a difference between the first total metal density and the second total metal density is lower than about 0.1.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: November 13, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Wei Lin, Guan-Yu Chen, Yu-Min Liang, Tin-Hao Kuo, Chen-Shien Chen
  • Patent number: 10128213
    Abstract: A method includes forming a first through-via from a first conductive pad of a first device die, and forming a second through-via from a second conductive pad of a second device die. The first and second conductive pads are at top surfaces of the first and the second device dies, respectively. The first and the second conductive pads may be used as seed layers. The second device die is adhered to the top surface of the first device die. The method further includes encapsulating the first and the second device dies and the first and the second through-vias in an encapsulating material, with the first and the second device dies and the first and the second through-vias encapsulated in a same encapsulating process. The encapsulating material is planarized to reveal the first and the second through-vias. Redistribution lines are formed to electrically couple to the first and the second through-vias.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: November 13, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Kuo-Chung Yee, Hao-Yi Tsai, Tin-Hao Kuo
  • Patent number: 10056345
    Abstract: A pillar structure, and a method of forming, for a substrate is provided. The pillar structure may have one or more tiers, where each tier may have a conical shape or a spherical shape. In an embodiment, the pillar structure is used in a bump-on-trace (BOT) configuration. The pillar structures may have circular shape or an elongated shape in a plan view. The substrate may be coupled to another substrate. In an embodiment, the another substrate may have raised conductive traces onto which the pillar structure may be coupled.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: August 21, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tin-Hao Kuo, Chen-Shien Chen, Mirng-Ji Lii, Chen-Hua Yu, Sheng-Yu Wu, Yao-Chun Chuang
  • Publication number: 20180233382
    Abstract: Structures and formation methods of a chip package are provided. The chip package includes a semiconductor die and a protection layer encapsulating the semiconductor die. The chip package also includes a conductive structure in the protection layer and separated from the semiconductor die by the protection layer. The chip package further includes an interconnection structure over the conductive structure and the protection layer. The interconnection structure has a protruding portion between the conductive structure and the semiconductor die, and the protruding portion extends into the protection layer.
    Type: Application
    Filed: April 13, 2018
    Publication date: August 16, 2018
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shing-Chao CHEN, Chih-Wei LIN, Meng-Tse CHEN, Hui-Min HUANG, Ming-Da CHENG, Kuo-Lung PAN, Wei-Sen CHANG, Tin-Hao KUO, Hao-Yi TSAI
  • Patent number: 10049953
    Abstract: A method includes forming a through-via from a first conductive pad of a first device die. The first conductive pad is at a top surface of the first device die. A second device die is adhered to the top surface of the first device die. The second device die has a surface conductive feature. The second device die and the through-via are encapsulated in an encapsulating material. The encapsulating material is planarized to reveal the through-via and the surface conductive feature. Redistribution lines are formed over and electrically coupled to the through-via and the surface conductive feature.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: August 14, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Kuo-Chung Yee, Hao-Yi Tsai, Tin-Hao Kuo