Patents by Inventor Ting Chu

Ting Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10388868
    Abstract: A semiconductor structure includes a memory region. A memory structure is disposed on the memory region. The memory structure includes a first electrode, a resistance variable layer, protection spacers and a second electrode. The first electrode has a top surface and a first outer sidewall surface on the memory region. The resistance variable layer has a first portion and a second portion. The first portion is disposed over the top surface of the first electrode and the second portion extends upwardly from the first portion. The protection spacers are disposed over a portion of the top surface of the first electrode and surround the second portion of the resistance variable layer. The protection spacers are configurable to protect at least one conductive path in the resistance variable layer. The protection spacers have a second outer sidewall surface substantially aligned with the first outer sidewall surface of the first electrode.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: August 20, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Chi Tu, Chih-Yang Chang, Hsia-Wei Chen, Chin-Chieh Yang, Sheng-Hung Shih, Wen-Chun You, Wen-Ting Chu, Yu-Wen Liao
  • Patent number: 10388865
    Abstract: The present disclosure, in some embodiments, relates to a resistive random access memory (RRAM) cell. The RRAM cell has a bottom electrode disposed over a lower interconnect layer and a data storage layer having a first thickness over the bottom electrode. A capping layer is disposed over the data storage layer. The capping layer has a second thickness that is in a range of between approximately 2 and approximately 3 times thicker than the first thickness. A top electrode is disposed over the capping layer and an upper interconnect layer is disposed over the top electrode.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: August 20, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Trinh Hai Dang, Hsing-Lien Lin, Cheng-Yuan Tsai, Chin-Chieh Yang, Yu-Wen Liao, Wen-Ting Chu, Chia-Shiung Tsai
  • Publication number: 20190244895
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a lower interconnect layer disposed within a first inter-level dielectric (ILD) layer over a substrate. A plurality of MIM (metal-insulator-metal) structures are disposed within a second inter-level dielectric (ILD) layer over the lower interconnect layer. An upper interconnect layer is coupled to the plurality of MIM structures at first locations that are directly over second locations at which the lower interconnect layer is coupled to the plurality of MIM structures. One or both of the lower interconnect layer and the upper interconnect layer are comprised within a conductive path that electrically couples the plurality of MIM structures in a series connection.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 8, 2019
    Inventors: Kuo-Chi Tu, Chin-Chieh Yang, Wen-Ting Chu
  • Publication number: 20190229265
    Abstract: Some embodiments relate to a device. The device includes a top electrode and a via disposed over the top electrode. A peripheral upper surface of the top electrode is above a central upper surface of the top electrode, and a tapered inner sidewall of the top electrode connects the peripheral upper surface to the central upper surface. The via establishes electrical contact with the tapered inner sidewall but is spaced apart from the central upper surface.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Kuo-Chi Tu, Chih-Yang Chang, Chin-Chieh Yang, Yu-Wen Liao, Wen-Chun You, Sheng-Hung Shih
  • Patent number: 10311952
    Abstract: In some embodiments, the present disclosure relates to a resistive random access memory (RRAM) memory circuit. The memory circuit has a word-line decoder operably coupled to a first RRAM device and a second RRAM device by a word-line. A bit-line decoder is coupled to the first RRAM device by a first bit-line and to the second RRAM device by a second bit-line. A bias element is configured to apply a first non-zero bias voltage to the second bit-line concurrent to the bit-line decoder applying a non-zero voltage to the first bit-line.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: June 4, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chin-Chieh Yang, Chih-Yang Chang, Chang-Sheng Liao, Hsia-Wei Chen, Jen-Sheng Yang, Kuo-Chi Tu, Sheng-Hung Shih, Wen-Ting Chu, Manish Kumar Singh, Chi-Tsai Chen
  • Publication number: 20190164606
    Abstract: A memory architecture includes: a plurality of cell arrays each of which comprises a plurality of bit cells, wherein each of bit cells of the plurality of cell arrays uses a respective variable resistance dielectric layer to transition between first and second logic states; and a control logic circuit, coupled to the plurality of cell arrays, and configured to cause a first information bit to be written into respective bit cells of a pair of cell arrays as an original logic state of the first information bit and a logically complementary logic state of the first information bit, wherein the respective variable resistance dielectric layers are formed by using a same recipe of deposition equipment and have different diameters.
    Type: Application
    Filed: October 12, 2018
    Publication date: May 30, 2019
    Inventors: Yu-Der CHIH, Chung-Cheng Chou, Wen-Ting Chu
  • Publication number: 20190164602
    Abstract: A memory device includes a bottom electrode, a resistance switching layer and a top electrode. The bottom electrode is over a metallization layer embedded in an inter-metal dielectric layer. The bottom electrode has a top surface and a sidewall that extends at an obtuse angle relative to the top surface. The resistance switching layer is over the bottom electrode. The top electrode is over the resistance switching layer.
    Type: Application
    Filed: January 12, 2018
    Publication date: May 30, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Chi TU, Chu-Jie HUANG, Sheng-Hung SHIH, Nai-Chao SU, Wen-Ting CHU
  • Patent number: 10276485
    Abstract: Various embodiments of the present application are directed towards an integrated circuit comprising a memory cell on a homogeneous bottom electrode via (BEVA) top surface. In some embodiments, the integrated circuit comprises a conductive wire, a via dielectric layer, a via, and a memory cell. The via dielectric layer overlies the conductive wire. The via extends through the via dielectric layer to the conductive wire, and has a first sidewall, a second sidewall, and a top surface. The first and second sidewalls of the via are respectively on opposite sides of the via, and directly contact sidewalls of the via dielectric layer. The top surface of the via is homogenous and substantially flat. Further, the top surface of the via extends laterally from the first sidewall of the via to the second sidewall of the via. The memory cell is directly on the top surface of the via.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Yu-Wen Liao
  • Patent number: 10276489
    Abstract: The present disclosure relates to an integrated circuit configured to mitigate damage to MIM decoupling capacitors. In some embodiments, the integrated chip has a lower interconnect layer vertically separated from a substrate by a first inter-level dielectric (ILD) layer. A conductive contact extends from a transistor device within the substrate to an uppermost surface of the first ILD layer. A plurality of MIM (metal-insulator-metal) structures are arranged over the lower interconnect layer. An upper interconnect layer is over the plurality of MIM structures. One or both of the lower interconnect layer and the upper interconnect layer are comprised within a conductive path that electrically couples the plurality of MIM structures in a series connection.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Chi Tu, Chin-Chieh Yang, Wen-Ting Chu
  • Patent number: 10276790
    Abstract: Some embodiments relate to an integrated circuit device, which includes a bottom electrode, a dielectric layer, and top electrode. The dielectric layer is disposed over the bottom electrode. The top electrode is disposed over the dielectric layer, and an upper surface of the top electrode exhibits a recess. A via is disposed over the top electrode. The via makes electrical contact with only a tapered sidewall of the recess without contacting a bottom surface of the recess.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Kuo-Chi Tu, Chih-Yang Chang, Chin-Chieh Yang, Yu-Wen Liao, Wen-Chun You, Sheng-Hung Shih
  • Publication number: 20190123274
    Abstract: A memory cell and method including a first electrode formed through a first opening in a first dielectric layer, a resistive layer formed on the first electrode, a spacing layer formed on the resistive layer, a second electrode formed on the resistive layer, and a second dielectric layer formed on the second electrode, the second dielectric layer including a second opening. The first dielectric layer formed on a substrate including a first metal layer. The first electrode and the resistive layer collectively include a first lip region that extends a first distance beyond the first opening. The second electrode and the second dielectric layer collectively include a second lip region that extends a second distance beyond the first opening. The spacing layer extends from the second distance to the first distance. The second electrode is coupled to a second metal layer using a via that extends through the second opening.
    Type: Application
    Filed: December 12, 2018
    Publication date: April 25, 2019
    Inventors: Chih-Yang Chang, Hsia-Wei Chen, Chin-Chieh Yang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20190123271
    Abstract: The present disclosure, in some embodiments, relates to a memory device. The memory device includes a bottom electrode via and a bottom electrode over a top of the bottom electrode via. A data storage layer is over the bottom electrode and a top electrode is over the data storage layer. A top electrode via is on an upper surface of the top electrode and is centered along a first line that is laterally offset from a second line centered upon a bottommost surface of the bottom electrode via. The first line is perpendicular to the upper surface of the top electrode and parallel to the second line.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 25, 2019
    Inventors: Chih-Yang Chang, Wen-Ting Chu, Kuo-Chi Tu, Yu-Wen Liao, Hsia-Wei Chen, Chin-Chieh Yang, Sheng-Hung Shih, Wen-Chun You
  • Publication number: 20190123264
    Abstract: The present disclosure, in some embodiments, relates to an integrated circuit. The integrated circuit includes a dielectric protection layer disposed over a dielectric structure that laterally surrounds one or more conductive interconnect layers. The dielectric protection layer has a protrusion extending outward from an upper surface of the dielectric protection layer. A bottom electrode is disposed over the dielectric protection layer and has sidewalls extending outward from a lower surface of the bottom electrode through the dielectric protection layer. The bottom electrode has a substantially planar upper surface over the protrusion. A data storage element is over the substantially planar upper surface of the bottom electrode, and a top electrode is over the data storage element.
    Type: Application
    Filed: December 17, 2018
    Publication date: April 25, 2019
    Inventors: Harry-Hak-Lay Chuang, Hung Cho Wang, Tong-Chern Ong, Wen-Ting Chu, Yu-Wen Liao, Kuei-Hung Shen, Kuo-Yuan Tu, Sheng-Huang Huang
  • Publication number: 20190115530
    Abstract: The present disclosure, in some embodiments, relates to a resistive random access memory (RRAM) device. The RRAM device includes a lower electrode over a conductive interconnect, and an upper electrode over the lower electrode. A data storage structure is disposed between the lower electrode and the upper electrode. The data storage structure includes a plurality of metal oxide layers having one or more metals from a first group of metals. A concentration of the one or more metals from the first group of metals changes as a distance from the lower electrode increases.
    Type: Application
    Filed: December 6, 2018
    Publication date: April 18, 2019
    Inventors: Hai-Dang Trinh, Cheng-Yuan Tsai, Hsing-Lien Lin, Wen-Ting Chu
  • Patent number: 10262731
    Abstract: A device includes a first word line, a resistive random access memory (RRAM) cell, a second word line, and a charge pump circuit. The RRAM cell is coupled to the first word line and is not formed. The charge pump circuit is coupled to the second word line and is configured to provide a negative voltage. Methods of forming the device are also disclosed.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: April 16, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chih-Yang Chang, Wen-Ting Chu, Yu-Wei Ting, Chun-Yang Tsai, Kuo-Ching Huang
  • Publication number: 20190109178
    Abstract: In some embodiments, the present disclosure relates to a method of forming a memory circuit. The method may be performed by forming an interconnect wire within an inter-level dielectric (ILD) layer over a substrate. A conjunct electrode structure is formed over the interconnect wire, a data storage film is formed over the conjunct electrode structure, and a disjunct electrode structure is formed over the data storage film. The data storage film, the disjunct electrode structure, and the conjunct electrode structure are patterned to form a first data storage layer between the interconnect wire and a first disjunct electrode and to form a second data storage layer between the interconnect wire and a second disjunct electrode.
    Type: Application
    Filed: November 28, 2018
    Publication date: April 11, 2019
    Inventors: Chin-Chieh Yang, Chih-Yang Chang, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20190103493
    Abstract: A semiconductor device includes a memory circuit and a logic circuit. The memory circuit includes a word line, a bit line, a common line and a memory transistor having a gate coupled to the word line, a drain coupled to the bit line and a source coupled to the common line. The logic circuit includes a field effect transistor (FET) having a gate, a drain and a source. The memory transistor has a gate electrode layer formed on a gate dielectric layer, and the gate dielectric layer includes a first insulating layer and a first ferroelectric (FE) material layer. The FET has a gate electrode layer formed on a gate dielectric layer, and the gate dielectric layer includes a second insulating layer and a second FE material layer.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 4, 2019
    Inventors: Kuo-Chi TU, Jen-Sheng YANG, Sheng-Hung SHIH, Tong-Chern ONG, Wen-Ting CHU
  • Patent number: 10249756
    Abstract: A semiconductor device includes a memory circuit and a logic circuit. The memory circuit includes a word line, a bit line, a common line and a memory transistor having a gate coupled to the word line, a drain coupled to the bit line and a source coupled to the common line. The logic circuit includes a field effect transistor (FET) having a gate, a drain and a source. The memory transistor has a gate electrode layer formed on a gate dielectric layer, and the gate dielectric layer includes a first insulating layer and a first ferroelectric (FE) material layer. The FET has a gate electrode layer formed on a gate dielectric layer, and the gate dielectric layer includes a second insulating layer and a second FE material layer.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: April 2, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Chi Tu, Jen-Sheng Yang, Sheng-Hung Shih, Tong-Chern Ong, Wen-Ting Chu
  • Publication number: 20190096817
    Abstract: In accordance with some embodiments a via is formed over a semiconductor device, wherein the semiconductor device is encapsulated within an encapsulant 129. A metallization layer and a second via are formed over and in electrical connection with the first via, and the metallization layer and the second via are formed using the same seed layer. Embodiments include fully landed vias, partially landed vias in contact with the seed layer, and partially landed vias not in contact with the seed layer.
    Type: Application
    Filed: July 6, 2018
    Publication date: March 28, 2019
    Inventors: Chen-Hua Yu, Hui-Jung Tsai, Hung-Jui Kuo, Chung-Shi Liu, Han-Ping Pu, Ting-Chu Ko
  • Publication number: 20190096841
    Abstract: Provided is a package structure includes a die having a first connector, a RDL structure disposed on the die, and a second connector. The RDL structure includes at least one elongated via located on and connected to the first connector. The second connector is disposed on and connected to the RDL structure.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 28, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Kai Liu, Han-Ping Pu, Ting-Chu Ko, Yung-Ping Chiang, Chang-Wen Huang, Yu-Sheng Hsieh