Patents by Inventor Ting-Kuang Chiang

Ting-Kuang Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7155078
    Abstract: An optical transmitter photonic integrated circuit (TxPIC) comprises a semiconductor monolithic chip with a plurality of optical signal channels where each channel comprises a modulated signal source. The output from the modulated signal sources are coupled to an input of an integrated optical combiner to form a WDM output signal for transmission off the TxPIC chip to an optical transmission link. An optical service channel (OSC) is also integrated on the TxPIC chip to receive a service signal from the optical receiver source which is also coupled the optical transmission link.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: December 26, 2006
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Ting-Kuang Chiang, Radhakrishnan L. Nagarajan, Vincent G. Dominic, Fred A. Kish, Jr.
  • Patent number: 7130499
    Abstract: An optical communication module comprises a plurality of monolithic semiconductor transmitter photonic integrated circuit (TxPIC) chips each having a plurality of optical signal channels approximating wavelengths on a standardized grid. Each of the channels comprises a laser source optically coupled to an electro-optic modulator. The outputs of the electro-optic modulators are coupled to inputs of an optical combiner integrated on each of the chips for combining the inputs to form a combined signal output from the chip. A second optical combiner combines the combined signal outputs from the TxPICs to form a combined optical signal group output. A booster optical amplifier is optically coupled to the second optical combiner to receive and amplify the combined optical signal group output from the second optical combiner.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: October 31, 2006
    Assignee: Infinera Corporation
    Inventors: Stephen G. Grubb, Matthew L. Mitchell, Robert B. Taylor, Ting-Kuang Chiang, Vincent G. Dominic
  • Patent number: 7123786
    Abstract: An optical-to-electrical-to-optical converter comprises a monolithic receiver photonic integrated circuit (RxPIC) InP-based chip comprising an optical waveguide formed in the chip from a chip input to receive a first multiplexed channel signal from an optical link and provide them to an arrayed waveguide grating (AWG) which demultiplexes the multiplexed channel signals and provides a plurality of electrical channel signals to an electronic regenerator. The regenerator regenerates the electrical channel signals to an original signal waveform and provides the reformed electrical signals to a monolithic transmitter photonic integrated circuit (TxPIC) InP-based chip having an array of modulated sources formed in the chip that are coupled as inputs to an arrayed waveguide grating (AWG). The TxPIC modulates the reformed electrical signals to form a plurality of optical channel sign which are combined to form a second first multiplexed channel signal for transmission on an optical link.
    Type: Grant
    Filed: May 5, 2005
    Date of Patent: October 17, 2006
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Radhakrishnan L. Nagarajan, Fred A. Kish, Jr., Mark J. Missey, Vincent G. Dominic, Atul Mathur, Frank H. Peters, Charles H. Joyner, Richard P. Schneider, Ting-Kuang Chiang
  • Patent number: 7116861
    Abstract: A method is disclosed for monitoring and controlling the bit error rate (BER) in an optical communication network where an optical receiver in the optical transmission network is a monolithic photonic integrated circuit (RxPIC) chip. The method includes the steps of decombining on-chip a combined channel signal received from the network and then monitoring a real time bit error rate (BER) of a decombined channel signal. The determined BER is then communicated, such as through an optical service channel (OSC) to an optical transmitter source that is the source of origin of the channel signal. Based upon the determined BER, the chirp of a channel signal modulator at the optical transmitter source that generated the monitored channel signal is adjusted by, for example, adjusting its bias. The same channel signal received at the RxPIC chip can be monitored again to determine if an acceptable level for the BER has been achieved by the previous chirp adjustment.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: October 3, 2006
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Ting-Kuang Chiang, Vincent G. Dominic, Fred A. Kish, Jr., Radhakrishnan L. Nagarajan
  • Patent number: 7113667
    Abstract: A FEC enhanced system for an optical transport or communication network that includes an optical transmitter that has a transmitter photonic integrated circuit (TxPIC) chip having an integrated circuit comprising an array of modulated sources providing a plurality of optical modulated channel signals comprising digital bit data streams where each signal is at a wavelength on a wavelength grid. The modulated channel signal outputs from the modulated sources are provided to an integrated multiplexer in the circuit to provide a WDM output signal at a circuit output. At least one FEC encoder is coupled to the modulated sources to encode error-correcting code containing redundant information of the data bit stream for each channel signal. An optical receiver in the network includes a receiver photonic integrated circuit (RxPIC) chip having an integrated circuit comprising an input to a demultiplexer and an array of photodetectors coupled to outputs of the demultiplexer.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: September 26, 2006
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Fred A. Kish, Jr., Vincent G. Dominic, Ting-Kuang Chiang
  • Patent number: 7082253
    Abstract: A wider window margin in an eye diagram for an optical transmission signal is provided for both threshold and phase (timing).
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: July 25, 2006
    Assignee: Infinera Corporation
    Inventors: Vincent G. Dominic, Ting-Kuang Chiang
  • Patent number: 7062111
    Abstract: A C- and/or L-band booster optical amplifier is utilized at the output of a semiconductor transmitter photonic integrated circuit (TxPIC) chip or the optical combined outputs of multiple semiconductor transmitter photonic integrated circuit (TxPIC) chips employed in an optical communication module, the deployment of integrated semiconductor optical amplifiers (SOAs) on the TxPIC chips can be eliminated. This would reduce both the complexity in designing and fabricating these chips as well as reducing the power consumption of the TxPIC chips. The deployment of such a Tx booster optical amplifier would also take into consideration the nonlinear effects of difficult high loss single mode fiber (SMF) or other fiber type links by allowing a higher power per channel to be achieved compared to the case where channel amplification is attempted solely on the TxPIC chip.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: June 13, 2006
    Inventors: Stephen G. Grubb, Matthew L. Mitchell, Robert B. Taylor, Ting-Kuang Chiang, Vincent G. Dominic
  • Patent number: 7058248
    Abstract: A C- and/or L-band booster optical amplifier is utilized in an optical communication system at the output of one or more semiconductor transmitter photonic integrated circuit (TxPIC) chips or the optical combined outputs of multiple semiconductor transmitter photonic integrated circuit (TxPIC) chips employed in an optical communication module, the deployment of integrated semiconductor optical amplifiers (SOAs) on the TxPIC chips can be eliminated. This would reduce both the complexity in designing and fabricating these chips as well as reducing the power consumption of the TxPIC chips. The deployment of such a Tx booster optical amplifier would also take into consideration the nonlinear effects of difficult high loss single mode fiber (SMF) or other fiber type links by allowing a higher power per channel to be achieved compared to the case where channel amplification is attempted solely on the TxPIC chip.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: June 6, 2006
    Assignee: Infinera Corporation
    Inventors: Stephen G. Grubb, Matthew L. Mitchell, Robert B. Taylor, Ting-Kuang Chiang, Vincent G. Dominic
  • Patent number: 7058263
    Abstract: An optical transport network comprises a monolithic transmitter photonic integrated circuit (TxPIC) InP-based chip and a monolithic receiver photonic integrated circuit (RxPIC) InP-based chip.
    Type: Grant
    Filed: May 5, 2005
    Date of Patent: June 6, 2006
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Radhakrishnan L. Nagarajan, Fred A. Kish, Jr., Mark J. Missey, Vincent G. Dominic, Atul Mathur, Frank H. Peters, Charles H. Joyner, Richard P. Schneider, Ting-Kuang Chiang
  • Patent number: 7050666
    Abstract: An optical receiver photonic integrated circuit (RxPIC) system includes a monolithic semiconductor chip having an input to receive a WDM combined channel signal comprising a plurality of optical channel signals of different wavelengths. A chip-integrated decombiner is coupled to the chip input to receive the WDM combined channel signal and separate the same into a plurality of different channel signals having different wavelengths. An array of integrated photodetectors, also integrated on the chip, each receive a separated channel signal and together provide a plurality of electrical signals representative of the optical channel signals. An electronic amplifier receives and amplifies the electrical signals. An electronic dispersion equalization (EDE) circuit is coupled to receive and adjust the amplified electrical signals for timing errors due to imperfect clock recovery of said electrical signals. An clock and data recover (CDR) circuit recovers a signal clock and data signals from the electrical signals.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: May 23, 2006
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Ting-Kuang Chiang
  • Publication number: 20060067619
    Abstract: An optical transport network comprises a monolithic transmitter photonic integrated circuit (TxPIC) InP-based chip and a monolithic receiver photonic integrated circuit (RxPIC) InP-based chip.
    Type: Application
    Filed: November 15, 2005
    Publication date: March 30, 2006
    Applicant: Infinera Corporation
    Inventors: David Welch, Radhakrishnan Nagarajan, Fred Kish, Mark Missey, Vincent Dominic, Atul Mathur, Frank Peters, Charles Joyner, Richard Schneider, Ting-Kuang Chiang
  • Patent number: 7010185
    Abstract: A method of deploying a passive optical combiner that is a broad bandwidth spectral wavelength combiner for combining the outputs from multiples transmitter photonic integrated circuit (TxPIC) chips and, thereafter, the amplification of the combined channel signals with a booster optical amplifier couple between the passive optical combiner and the fiber transmission link. The booster optical amplifier may be a rear earth fiber amplifier, such as an erbium doped fiber amplifier (EDFA), or one or more semiconductor optical amplifiers (SOAs) on one or more semiconductor chips.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: March 7, 2006
    Assignee: Infinera Corporation
    Inventors: Stephen G. Grubb, Matthew L. Mitchell, Robert B. Taylor, Ting-Kuang Chiang, Vincent G. Dominic
  • Publication number: 20060008279
    Abstract: An optical transmission network includes an optical transmitter photonic integrated circuit (TxPIC) chip, utilized in an optical transmitter and has a plurality of monolithic modulated sources integrated for multiple signal channels on the same semiconductor chip is provided with channel equalization at the optical receiver side of the network that permits one or more such integrated modulated sources in the TxPIC chip to be out of specification thereby increasing the chip yield and reducing manufacturing costs in the deployment of such TxPIC chips. FEC error counts at the FEC decoder on the optical receiver side of the network includes counters that accumulate a plurality of bit pattern-dependent error counts based on different N-bit patterns in the received data bit stream. The accumulated counts of different N-bit patterns are utilized to provide for corrections to threshold and phase relative to the bit eye pattern as well as provided for weight coefficients for the optical receiver equalization system.
    Type: Application
    Filed: July 9, 2004
    Publication date: January 12, 2006
    Applicant: Infinera Corporation
    Inventors: Ting-Kuang Chiang, Vincent Dominic, Robert Taylor
  • Publication number: 20050286521
    Abstract: Client signals to be transported in a transmission network, particularly an optical transmission network, may have different payload envelope rates and are digitally mapped on the client egress side into first transport frames (also referred to as iDTF frames, or intra-node or internal digital transport frames), at the client side for intra-transport within terminal network elements (NEs) and further digitally mapped into second transport frames (also referred to as DTFs or digital transport frames) for inter-transport across the network or a link which, through byte stuffing carried out in the first transport frames so that they always have the same frame size. As a result, the system of framers provides for a DTF format to always have a uniformly universal frame rate throughout the network supporting any client signal frequency, whether a standard client payload or a proprietary client payload, as long as its rate is below payload envelope rate of the client signal.
    Type: Application
    Filed: June 16, 2005
    Publication date: December 29, 2005
    Applicant: Infinera Corporation
    Inventors: Ting-Kuang Chiang, Drew Perkins, Edward Sprague, Daniel Murphy
  • Publication number: 20050276613
    Abstract: A FEC enhanced system for an optical transport or communication network that includes an optical transmitter that has a transmitter photonic integrated circuit (TxPIC) chip having an integrated circuit comprising an array of modulated sources providing a plurality of optical modulated channel signals comprising digital bit data streams where each signal is at a wavelength on a wavelength grid. The modulated channel signal outputs from the modulated sources are provided to an integrated multiplexer in the circuit to provide a WDM output signal at a circuit output. At least one FEC encoder is coupled to the modulated sources to encode error-correcting code containing redundant information of the data bit stream for each channel signal. An optical receiver in the network includes a receiver photonic integrated circuit (RxPIC) chip having an integrated circuit comprising an input to a demultiplexer and an array of photodetectors coupled to outputs of the demultiplexer.
    Type: Application
    Filed: May 24, 2005
    Publication date: December 15, 2005
    Applicant: Infinera Corporation
    Inventors: David Welch, Fred Kish, Vincent Dominic, Ting-Kuang Chiang
  • Publication number: 20050207696
    Abstract: An optical-to-electrical-to-optical converter comprises a monolithic receiver photonic integrated circuit (RxPIC) InP-based chip comprising an optical waveguide formed in the chip from a chip input to receive a first multiplexed channel signal from an optical link and provide them to an arrayed waveguide grating (AWG) which demultiplexes the multiplexed channel signals and provides a plurality of electrical channel signals to an electronic regenerator. The regenerator regenerates the electrical channel signals to an original signal waveform and provides the reformed electrical signals to a monolithic transmitter photonic integrated circuit (TxPIC) InP-based chip having an array of modulated sources formed in the chip that are coupled as inputs to an arrayed waveguide grating (AWG). The TxPIC modulates the reformed electrical signals to form a plurality of optical channel sign which are combined to form a second first multiplexed channel signal for transmission on an optical link.
    Type: Application
    Filed: May 5, 2005
    Publication date: September 22, 2005
    Applicant: Infinera Corporation
    Inventors: David Welch, Radhakrishnan Nagarajan, Fred Kish, Mark Missey, Vincent Dominic, Atul Mathur, Frank Peters, Charles Joyner, Richard Schneider, Ting-Kuang Chiang
  • Publication number: 20050201669
    Abstract: An optical transport network comprises a monolithic transmitter photonic integrated circuit (TxPIC) InP-based chip and a monolithic receiver photonic integrated circuit (RxPIC) InP-based chip.
    Type: Application
    Filed: May 5, 2005
    Publication date: September 15, 2005
    Applicant: Infinera Corporation
    Inventors: David Welch, Radhakrishnan Nagarajan, Fred Kish, Mark Missey, Vincent Dominic, Atul Mathur, Frank Peters, Charles Joyner, Richard Schneider, Ting-Kuang Chiang
  • Publication number: 20050169640
    Abstract: An optical communication module comprises at least one monolithic semiconductor transmitter photonic integrated circuit chip having a plurality of optical signal channels approximating wavelengths on a standardized grid. Each of said channels comprises a laser source optically coupled to an electro-optic modulator. The outputs of the electro-optic modulators are coupled to inputs of an integrated optical combiner for combining the inputs to form a combined signal output from the chip. A booster optical amplifier is optically coupled to receive and amplify the combined signal output from the chip.
    Type: Application
    Filed: March 15, 2005
    Publication date: August 4, 2005
    Applicant: Infinera Corporation
    Inventors: Stephen Grubb, Matthew Mitchell, Robert Taylor, Ting-Kuang Chiang, Vincent Dominic
  • Publication number: 20050135729
    Abstract: An optical receiver photonic integrated circuit (RxPIC) comprises a semiconductor monolithic chip having an input to receive from an optical transmission link a combined channel signal originating from an optical transmitter source and comprising a plurality of channel signals having different wavelengths forming a wavelength grid. An optical decombiner is integrated in the chip and optically coupled to the input to receive the multiplexed channel signal and provide a decombined individual channel signal on an output waveguide of a plurality of such output waveguides provided from the optical decombiner. A plurality of photodetectors are also integrated in the chip and each photodetector is optically coupled to one of the output waveguides to receive a decombined channel signal and convert the channel signal to an electrical signal.
    Type: Application
    Filed: January 6, 2005
    Publication date: June 23, 2005
    Inventors: David Welch, Radhakrishnan Nagarajan, Fred Kish, Mark Missey, Vincent Dominic, Atul Mathur, Frank Peters, Charles Joyner, Richard Schneider, Ting-Kuang Chiang
  • Publication number: 20050135731
    Abstract: An optical receiver photonic integrated circuit (RxPIC) system includes a monolithic semiconductor chip having an input to receive a WDM combined channel signal comprising a plurality of optical channel signals of different wavelengths. A chip-integrated decombiner is coupled to the chip input to receive the WDM combined channel signal and separate the same into a plurality of different channel signals having different wavelengths. An array of integrated photodetectors, also integrated on the chip, each receive a separated channel signal and together provide a plurality of electrical signals representative of the optical channel signals. An electronic amplifier receives and amplifies the electrical signals. An electronic dispersion equalization (EDE) circuit is coupled to receive and adjust the amplified electrical signals for timing errors due to imperfect clock recovery of said electrical signals. An clock and data recover (CDR) circuit recovers a signal clock and data signals from the electrical signals.
    Type: Application
    Filed: January 10, 2005
    Publication date: June 23, 2005
    Applicant: Infinera Corporation
    Inventors: David Welch, Vincent Dominic, Ting-Kuang Chiang