Patents by Inventor Tokuyuki Nakayama

Tokuyuki Nakayama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140020810
    Abstract: A capacitive touch panel, which is capable of providing high quality display, without a problem of position detection, having a structure where at least a transparent conductive film and a dielectric layer are laminated onto a transparent substrate, and a member for position detection comprising at least a wiring portion for position detection along with a electrodes for position detection is arranged at said substrate frame portion, characterized in that the transparent conductive film is composed of an oxide having indium oxide as a main component and containing gallium and tin; and this is provided by a method for producing a capacitive touch panel, characterized in that after forming an amorphous transparent conductive film composed of an oxide having indium oxide as a main component and containing gallium and tin onto the transparent substrate or the like.
    Type: Application
    Filed: July 10, 2013
    Publication date: January 23, 2014
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Patent number: 8633046
    Abstract: Provided are a semiconductor light-emitting element that is capable of efficiently outputting blue color or ultraviolet light, and a lamp using the semiconductor light-emitting element. The semiconductor light-emitting element is obtained by a manufacturing method that, when manufacturing the semiconductor light-emitting element that comprises a compound semiconductor layer that includes at least a p-type semiconductor layer, and a transparent electrode that is provided on the p-type semiconductor layer, includes a step of forming a film comprising an oxide of indium and gallium, or forming a film comprising an oxide of indium, gallium and tin, in an amorphous state on the p-type semiconductor layer, so as to form a transparent conductive film, followed by a step of performing an annealing process on the transparent conductive film at a temperature of 200° C. to 480° C.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: January 21, 2014
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Publication number: 20130299753
    Abstract: The present invention discloses a tablet for ion plating, which is capable of providing high speed film formation of a transparent conductive film suitable for a solar cell, and continuing film formation without generating crack, fracture or splash; and an oxide sintered body for obtaining the same. The oxide sintered body etc. comprising indium oxide as a main component, and tungsten as an additive element, content of tungsten being 0.001 to 0.15, as an atomic ratio of W/(In+W), characterized in that said oxide sintered body is mainly composed of a crystal grain (A) composed of the indium oxide phase with a bixbyite type structure, where tungsten does not make a solid solution, and a crystal grain (B) composed of the indium oxide phase with a bixbyite type structure, where tungsten does not make a solid solution, and has a density of 3.4 to 5.5 g/cm3.
    Type: Application
    Filed: January 19, 2012
    Publication date: November 14, 2013
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventor: Tokuyuki Nakayama
  • Patent number: 8551370
    Abstract: An oxide sintered body substantially containing zinc, tin and oxygen; containing tin at an atomic number ratio, Sn/(Zn+Sn), of 0.23 to 0.50, and being composed mainly of a zinc oxide phase and at least one kind of zinc stannate compound phase, or being composed of at least one kind of zinc stannate compound phase; provided by a method for manufacturing the oxide sintered body by formulating an aqueous solvent to raw material powder containing powder of a zinc stannate compound, or mixed powder of tin oxide powder and zinc oxide powder, and after mixing the resulting slurry for equal to longer than 15 hours, by subjecting the slurry to solid-liquid separation, drying and granulation and subsequently compacting by charging the granule into a mold followed by sintering the resultant compact under sintering atmosphere at 1300 to 1500° C. for equal to or longer than 15 hours.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: October 8, 2013
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Yoshiyuki Abe, Tokuyuki Nakayama, Go Ohara, Riichiro Wake
  • Patent number: 8440115
    Abstract: A target for sputtering or a tablet for ion plating, which enables to attain high rate film-formation and a nodule-less, an oxide sintered body suitable for obtaining the same and a production method therefor, and a transparent conductive film having low absorption of blue light and low specific resistance, obtained by using the same. It is provided by an oxide sintered body having indium and gallium as an oxide, characterized in that an In2O3 phase with a bixbyite-type structure forms a major crystal phase, and a GalnO3 phase of a ?-Ga2O3-type structure, or GalnO3 phase and a (Ga, In)2O3 phase is finely dispersed therein, as a crystal grain having an average particle diameter of equal to or smaller than 5 ?m, and a content of gallium is equal to or higher than 10% by atom and below 35% by atom as atom number ratio of Ga/(In+Ga) or the like.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: May 14, 2013
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Patent number: 8389135
    Abstract: An oxide sintered body having zinc oxide as a main component and containing magnesium, and a transparent conductive substrate are provided, and an oxide sintered body having zinc oxide and magnesium, wherein content of magnesium is from 0.02 to 0.30 as atom number ratio of Mg/(Zn+Mg); an oxide sintered body having zinc oxide, magnesium, gallium and/or aluminum, wherein content of gallium and/or aluminum is over 0 and equal to or lower than 0.09 as atom number ratio of (Ga+Al)/(Zn+Ga+Al), and content of magnesium is from 0.02 to 0.30 as atom number ratio of Mg/(Zn+Ga+Al+Mg); a target obtained by processing these oxide sintered bodies; and a transparent conductive film formed on a substrate by a sputtering method or an ion plating method, by using this target.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: March 5, 2013
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Patent number: 8349220
    Abstract: An oxide sintered body substantially containing zinc, tin and oxygen; containing tin at an atomic number ratio, Sn/(Zn+Sn), of 0.23 to 0.50, and being composed mainly of a zinc oxide phase and at least one kind of zinc stannate compound phase, or being composed of at least one kind of zinc stannate compound phase; provided by a method for manufacturing the oxide sintered body by formulating an aqueous solvent to raw material powder containing powder of a zinc stannate compound, or mixed powder of tin oxide powder and zinc oxide powder, and after mixing the resulting slurry for equal to longer than 15 hours, by subjecting the slurry to solid-liquid separation, drying and granulation, and subsequently compacting by charging the granule into a mold, followed by sintering the resultant compact under sintering atmosphere at 1300 to 1500° C. for equal to or longer than 15 hours.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: January 8, 2013
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Yoshiyuki Abe, Tokuyuki Nakayama, Go Ohara, Riichiro Wake
  • Publication number: 20130001080
    Abstract: An oxide sintered body substantially containing zinc, tin and oxygen; containing tin at an atomic number ratio, Sn/(Zn+Sn), of 0.23 to 0.50, and being composed mainly of a zinc oxide phase and at least one kind of zinc stannate compound phase, or being composed of at least one kind of zinc stannate compound phase; provided by a method for manufacturing the oxide sintered body by formulating an aqueous solvent to raw material powder containing powder of a zinc stannate compound, or mixed powder of tin oxide powder and zinc oxide powder, and after mixing the resulting slurry for equal to longer than 15 hours, by subjecting the slurry to solid-liquid separation, drying and granulation and subsequently compacting by charging the granule into a mold followed by sintering the resultant compact under sintering atmosphere at 1300 to 1500° C. for equal to or longer than 15 hours.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 3, 2013
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yoshiyuki Abe, Tokuyuki Nakayama, Go Ohara, Riichiro Wake
  • Publication number: 20120325310
    Abstract: Provided is a laminate which includes a transparent conductive film layer that is composed of an oxide thin film mainly composed of titanium oxide and contains an additional element such as niobium, and also contains an anatase phase having more excellent crystallinity and further has high refractive index and low resistivity by forming an optimal buffer layer on the substrate. Also provided are: a semiconductor light emitting element which comprises the laminate; and a functional element such as a solar cell, which includes the laminate.
    Type: Application
    Filed: March 1, 2011
    Publication date: December 27, 2012
    Inventors: Shigefusa Chichibu, Kouji Hazu, Tokuyuki Nakayama, Akikazu Tanaka
  • Publication number: 20120315439
    Abstract: A crystalline transparent conductive film containing indium oxide as a main component, and cerium, exhibiting low resistance derived from high refractive index and high carrier electron mobility, as well as small surface roughness, which is obtained by film-formation using an ion plating method. In the film, cerium content is 0.3 to 9% by atom, as an atomic number ratio of Ce/(In+Ce); film-formation is made using an ion plating method; and arithmetic average height (Ra) is 1.0 nm or lower. Also the film can contain one or more of titanium, zirconium, hafnium, molybdenum and tungsten, at a content of 1% by atom or lower, as an atomic number ratio of M/(In+Ce+M).
    Type: Application
    Filed: March 16, 2011
    Publication date: December 13, 2012
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventor: Tokuyuki Nakayama
  • Publication number: 20120251095
    Abstract: A black heat resistant light shading film usable as a shutter blade or a fixed diaphragm, a diaphragm blade for a diaphragm device for a light intensity adjusting module. The black heat resistant light shading film is formed with fine unevennesses at the both surfaces of a resin film having a heat resistance of 155° C. or higher. The resin film is a black film containing a black pigment and an inorganic filler and thickness of the black heat resistant light shading film is 25 ?m or less. Surface roughness (arithmetic average height Ra) of the both surfaces is 0.2 to 2.2 ?m and an average optical density, which is an index of light shading performance of light in a wavelength region of 380 to 780 nm, is 3.5 or higher.
    Type: Application
    Filed: November 2, 2010
    Publication date: October 4, 2012
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Katsushi Ono, Tokuyuki Nakayama
  • Publication number: 20120248491
    Abstract: Provided are a semiconductor light-emitting element that is capable of efficiently outputting blue color or ultraviolet light, and a lamp using the semiconductor light-emitting element. The semiconductor light-emitting element is obtained by a manufacturing method that, when manufacturing the semiconductor light-emitting element that comprises a compound semiconductor layer that includes at least a p-type semiconductor layer, and a transparent electrode that is provided on the p-type semiconductor layer, includes a step of forming a film comprising an oxide of indium and gallium, or forming a film comprising an oxide of indium, gallium and tin, in an amorphous state on the p-type semiconductor layer, so as to form a transparent conductive film, followed by a step of performing an annealing process on the transparent conductive film at a temperature of 200° C. to 480° C.
    Type: Application
    Filed: June 12, 2012
    Publication date: October 4, 2012
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Patent number: 8222667
    Abstract: Provided are a semiconductor light-emitting element that is capable of efficiently outputting blue color or ultraviolet light, and a lamp using the semiconductor light-emitting element. The semiconductor light-emitting element is obtained by a manufacturing method that, when manufacturing the semiconductor light-emitting element that comprises a compound semiconductor layer that includes at least a p-type semiconductor layer, and a transparent electrode that is provided on the p-type semiconductor layer, includes a step of forming a film comprising an oxide of indium and gallium, or forming a film comprising an oxide of indium, gallium and tin, in an amorphous state on the p-type semiconductor layer, so as to form a transparent conductive film, followed by a step of performing an annealing process on the transparent conductive film at a temperature of 200° C. to 480° C.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: July 17, 2012
    Assignee: Sumitomo Metal Mining Co., Ltd
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Publication number: 20120175569
    Abstract: A target for sputtering which enables to attain high rate film-formation of a transparent conductive film suitable for a blue LED or a solar cell, and a noduleless film-formation, an oxide sintered body most suitable for obtaining the same, and a production method thereof. A oxide sintered body comprising an indium oxide and a cerium oxide, and further comprising, as an oxide, one or more kinds of an metal element (M element) selected from the metal element group consisting of titanium, zirconium, hafnium, molybdenum and tungsten, wherein the cerium content is 0.
    Type: Application
    Filed: July 29, 2010
    Publication date: July 12, 2012
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Publication number: 20120175570
    Abstract: A tablet for ion plating which enables to attain high rate film-formation of a transparent conductive film suitable for a blue LED or a solar cell, and a noduleless film-formation not generating splash, an oxide sintered body most suitable for obtaining the same, and a production method thereof. A tablet for ion plating obtained by processing an oxide sintered body comprising indium and cerium as oxides, and having a cerium content of 0.3 to 9% by atom, as an atomicity ratio of Ce/(In+Ce), characterized in that said oxide sintered body has an In2O3 phase of a bixbyite structure as a main crystal phase, has a CeO2 phase of a fluorite-type structure finely dispersed as crystal grains having an average particle diameter of equal to or smaller than 3 ?m, as a second phase; and the oxide sintered body is produced by mixing raw material powder consisting of indium oxide powder with an average particle diameter of equal to or smaller than 1.
    Type: Application
    Filed: July 29, 2010
    Publication date: July 12, 2012
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Publication number: 20120024381
    Abstract: A transparent conductive film, useful in producing a highly efficient silicon-based thin film solar cell, superior in hydrogen reduction resistance and superior in optical confinement effect; a transparent conductive film laminated body using the same; a production method therefor; and a silicon-based thin film solar cell using this transparent conductive film or the transparent conductive film laminated body, as an electrode. It is provided by a transparent conductive film or the like, characterized by containing zinc oxide as a major component and at least one or more kinds of added metal elements selected from aluminum and gallium, whose content being within a range shown by the following expression (1), and having a surface roughness (Ra) of equal to or larger than 35.0 nm, and a surface resistance of equal to or lower than 65 ?/? —[Al]+0.30?[Ga]??2.68×[Al]+1.
    Type: Application
    Filed: March 10, 2010
    Publication date: February 2, 2012
    Applicant: Sumitomo Metal Mining., Ltd.
    Inventors: Yoshiyuki Abe, Tokuyuki Nakayama
  • Patent number: 8080182
    Abstract: The oxide sintered body mainly consists of gallium, indium, and oxygen, and a content of the gallium is more than 65 at. % and less than 100 at. % with respect to all metallic elements, and the density of the sintered body is 5.0 g/cm3 or more. The oxide film is obtained using the oxide sintered body as a sputtering target, and the shortest wavelength of the light where the light transmittance of the film itself except the substrate becomes 50% is 320 nm or less. The transparent base material is obtained by forming the oxide film on one surface or both surfaces of a glass plate, a quartz plate, a resin plate or resin film where one surface or both surfaces are covered by a gas barrier film, or on one surface or both surfaces of a transparent plate selected from a resin plate or a resin film where the gas barrier film is inserted in the inside.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: December 20, 2011
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Patent number: 8067102
    Abstract: In an absorption type multi-layer film ND filter having a thin substrate and provided thereon first and second absorption type multi-layer films which attenuate transmitted light, the first and second absorption type multi-layer films are constituted of multi-layer films each consisting essentially of dielectric layers formed of SiO2, Al2O3 or a mixture of these and metal film layers formed of Ni alone or an Ni alloy; the layers being alternately layered on the substrate; and the first and second absorption type multi-layer films are so formed on one side and the other side, respectively, of the substrate as to have a film structure in which they are symmetrical to each other interposing the substrate between them, and the warpage of the substrate has been controlled at a curvature of radius of 500 mm or more.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: November 29, 2011
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Hideharu Okami, Yoshiyuki Abe, Tokuyuki Nakayama
  • Publication number: 20110240934
    Abstract: An oxide sintered body substantially containing zinc, tin and oxygen; containing tin at an atomic number ratio, Sn/(Zn+Sn), of 0.23 to 0.50, and being composed mainly of a zinc oxide phase and at least one kind of zinc stannate compound phase, or being composed of at least one kind of zinc stannate compound phase; provided by a method for manufacturing the oxide sintered body by formulating an aqueous solvent to raw material powder containing powder of a zinc stannate compound, or mixed powder of tin oxide powder and zinc oxide powder, and after mixing the resulting slurry for equal to longer than 15 hours, by subjecting the slurry to solid-liquid separation, drying and granulation, and subsequently compacting by charging the granule into a mold, followed by sintering the resultant compact under sintering atmosphere at 1300 to 1500° C. for equal to or longer than 15 hours.
    Type: Application
    Filed: May 19, 2011
    Publication date: October 6, 2011
    Applicant: SUMITOMO METAL CO., LTD.
    Inventors: Yoshiyuki Abe, Tokuyuki Nakayama, Go Ohara, Riichiro Wake
  • Patent number: 7998603
    Abstract: A transparent conductive film which is amorphous, has a high transmittance of light in the visible region of short wavelengths, and is hard to beak with respect to bending is provided. The transparent conductive film is an amorphous oxide film composed of Ga, In, and O, in which a Ga content ranges from 35 at. % to 45 at. % with respect to all metallic atoms, a resistivity ranges 1.2×10?3?·cm to 8.0×10?3?·cm, a film thickness is 500 nm or less, and a transmittance of light at a wavelength of 380 nm is 45% or more.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: August 16, 2011
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe