Patents by Inventor Tom Yu
Tom Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20190117231Abstract: A sleeve for use with a tourniquet cuff to protect a patient's limb from tourniquet-related injury includes a stretchable body extending longitudinally over a sleeve length between a proximal end and a distal end. The body has a tubular shape, and the sleeve length is greater than a width of the tourniquet cuff. The body tapers from the proximal end to the distal end such that a proximal end circumference is greater than a distal end circumference. The body is formed to apply substantially uniform pressure to the patient's limb from the proximal end of the sleeve to the distal end of the sleeve varying only within a predetermined pressure range.Type: ApplicationFiled: December 20, 2018Publication date: April 25, 2019Inventors: James Allen McEwen, Michael Jameson, Tom Yu Chia Lai
-
Patent number: 10233338Abstract: Intercalation pastes for use with semiconductor devices are disclosed. The pastes contain precious metal particles, intercalating particles, and an organic vehicle and can be used to improve the material properties of metal particle layers. Specific formulations have been developed to be screen-printed directly onto a dried metal particle layer and fired to make a fired multilayer stack. The fired multilayer stack can be tailored to create a solderable surface, high mechanical strength, and low contact resistance. In some embodiments, the fired multilayer stack can etch through a dielectric layer to improve adhesion to a substrate. Such pastes can be used to increase the efficiency of silicon solar cells, specifically multi- and mono-crystalline silicon back-surface field (BSF), and passivated emitter and rear contact (PERC) photovoltaic cells. Other applications include integrated circuits and more broadly, electronic devices.Type: GrantFiled: November 23, 2016Date of Patent: March 19, 2019Assignee: PLANT PV, Inc.Inventors: Brian E. Hardin, Erik Sauar, Dhea Suseno, Jesse J. Hinricher, Jennifer Huang, Tom Yu-Tang Lin, Stephen T. Connor, Daniel J. Hellebusch, Craig H. Peters
-
Patent number: 10201354Abstract: A sleeve for use with a tourniquet cuff to protect a patient's limb from tourniquet-related injury includes a stretchable body extending longitudinally over a sleeve length between a proximal end and a distal end. The body has a tubular shape, and the sleeve length is greater than a width of the tourniquet cuff. The body tapers from the proximal end to the distal end such that a proximal end circumference is greater than a distal end circumference. The body is formed to apply substantially uniform pressure to the patient's limb from the proximal end of the sleeve to the distal end of the sleeve varying only within a predetermined pressure range.Type: GrantFiled: September 21, 2017Date of Patent: February 12, 2019Assignee: Western Digital Engineering Ltd.Inventors: James Allen McEwen, Michael Jameson, Tom Yu Chia Lai
-
Patent number: 10000645Abstract: A method of forming a fired multilayer stack are described. The method involves the steps of a) applying a wet metal particle layer on at least a portion of a surface of a substrate, b) drying the wet metal particle layer to form a dried metal particle layer, c) applying a wet intercalation layer directly on at least a portion of the dried metal particle layer to form a multilayer stack, d) drying the multilayer stack, and e) co-firing the multilayer stack to form the fired multilayer stack. The intercalating layer may include one or more of low temperature base metal particles, crystalline metal oxide particles, and glass frit particles. The wet metal particle layer may include aluminum, copper, iron, nickel, molybdenum, tungsten, tantalum, titanium, steel or combinations thereof.Type: GrantFiled: November 23, 2016Date of Patent: June 19, 2018Assignee: PLANT PV, Inc.Inventors: Brian E. Hardin, Erik Sauar, Dhea Suseno, Jesse J. Hinricher, Jennifer Huang, Tom Yu-Tang Lin, Stephen T. Connor, Daniel J. Hellebusch, Craig H. Peters
-
Publication number: 20180140306Abstract: A low-cost contour cuff for surgical tourniquet systems comprises: a sheath containing an inflatable bladder, the sheath having an arcuate shape, an outer surface and a centerline equidistant between first and second side edges; a securing strap non-releasably attached to the outer surface and formed of substantially inextensible material having a shape that is predetermined and substantially flat, wherein the strap includes a bending portion near a first strap end and a fastening portion near a second strap end, and wherein the bending portion is adapted to allow twisting of the bending portion out of the substantially flat shape to facilitate positioning of the fastening portion into any of a plurality of positions in the substantially flat shape; and fastening means for releasably attaching the fastening portion of the securing strap to the outer surface whenever the sheath is curved into a position for surrounding a limb.Type: ApplicationFiled: January 2, 2018Publication date: May 24, 2018Applicant: Western Clinical Engineering Ltd.Inventors: James A. McEwen, Michael Jameson, Kenneth L. Glinz, Tom Yu Chia Lai
-
Publication number: 20180116679Abstract: A low-cost contour cuff for surgical tourniquet systems comprises: a sheath containing an inflatable bladder, the sheath having an arcuate shape, an outer surface and a centerline equidistant between first and second side edges; a securing strap non-releasably attached to the outer surface and formed of substantially inextensible material having a shape that is predetermined and substantially flat, wherein the strap includes a bending portion near a first strap end and a fastening portion near a second strap end, and wherein the bending portion is adapted to allow twisting of the bending portion out of the substantially flat shape to facilitate positioning of the fastening portion into any of a plurality of positions in the substantially flat shape; and fastening means for releasably attaching the fastening portion of the securing strap to the outer surface whenever the sheath is curved into a position for surrounding a limb.Type: ApplicationFiled: December 22, 2017Publication date: May 3, 2018Applicant: Western Clinical Engineering Ltd.Inventors: James A. McEwen, Michael Jameson, Kenneth L. Glinz, Tom Yu Chia Lai
-
Patent number: 9741878Abstract: Intercalation pastes for use with semiconductor devices are disclosed. The pastes contain precious metal particles, intercalating particles, and an organic vehicle and can be used to improve the material properties of metal particle layers. Specific formulations have been developed to be screen-printed directly onto a dried metal particle layer and fired to make a fired multilayer stack. The fired multilayer stack can be tailored to create a solderable surface, high mechanical strength, and low contact resistance. In some embodiments, the fired multilayer stack can etch through a dielectric layer to improve adhesion to a substrate. Such pastes can be used to increase the efficiency of silicon solar cells, specifically multi- and mono-crystalline silicon back-surface field (BSF), and passivated emitter and rear contact (PERC) photovoltaic cells. Other applications include integrated circuits and more broadly, electronic devices.Type: GrantFiled: November 23, 2016Date of Patent: August 22, 2017Assignee: PLANT PV, Inc.Inventors: Brian E. Hardin, Erik Sauar, Dhea Suseno, Jesse J. Hinricher, Jennifer Huang, Tom Yu-Tang Lin, Stephen T. Connor, Daniel J. Hellebusch, Craig H. Peters
-
Publication number: 20170148937Abstract: Intercalation pastes for use with semiconductor devices are disclosed. The pastes contain precious metal particles, intercalating particles, and an organic vehicle and can be used to improve the material properties of metal particle layers. Specific formulations have been developed to be screen-printed directly onto a dried metal particle layer and fired to make a fired multilayer stack. The fired multilayer stack can be tailored to create a solderable surface, high mechanical strength, and low contact resistance. In some embodiments, the fired multilayer stack can etch through a dielectric layer to improve adhesion to a substrate. Such pastes can be used to increase the efficiency of silicon solar cells, specifically multi- and mono-crystalline silicon back-surface field (BSF), and passivated emitter and rear contact (PERC) photovoltaic cells. Other applications include integrated circuits and more broadly, electronic devices.Type: ApplicationFiled: November 23, 2016Publication date: May 25, 2017Inventors: Brian E. Hardin, Erik Sauar, Dhea Suseno, Jesse J. Hinricher, Jennifer Huang, Tom Yu-Tang Lin, Stephen T. Connor, Daniel J. Hellebusch, Craig H. Peters
-
Publication number: 20170148944Abstract: A method of forming a fired multilayer stack are described. The method involves the steps of a) applying a wet metal particle layer on at least a portion of a surface of a substrate, b) drying the wet metal particle layer to form a dried metal particle layer, c) applying a wet intercalation layer directly on at least a portion of the dried metal particle layer to form a multilayer stack, d) drying the multilayer stack, and e) co-firing the multilayer stack to form the fired multilayer stack. The intercalating layer may include one or more of low temperature base metal particles, crystalline metal oxide particles, and glass frit particles. The wet metal particle layer may include aluminum, copper, iron, nickel, molybdenum, tungsten, tantalum, titanium, steel or combinations thereof.Type: ApplicationFiled: November 23, 2016Publication date: May 25, 2017Inventors: Brian E. Hardin, Erik Sauar, Dhea Suseno, Jesse J. Hinricher, Jennifer Huang, Tom Yu-Tang Lin, Stephen T. Connor, Daniel J. Hellebusch, Craig H. Peters
-
Publication number: 20170145224Abstract: Intercalation pastes for use with semiconductor devices are disclosed. The pastes contain precious metal particles, intercalating particles, and an organic vehicle and can be used to improve the material properties of metal particle layers. Specific formulations have been developed to be screen-printed directly onto a dried metal particle layer and fired to make a fired multilayer stack. The fired multilayer stack can be tailored to create a solderable surface, high mechanical strength, and low contact resistance. In some embodiments, the fired multilayer stack can etch through a dielectric layer to improve adhesion to a substrate. Such pastes can be used to increase the efficiency of silicon solar cells, specifically multi- and mono-crystalline silicon back-surface field (BSF), and passivated emitter and rear contact (PERC) photovoltaic cells. Other applications include integrated circuits and more broadly, electronic devices.Type: ApplicationFiled: November 23, 2016Publication date: May 25, 2017Inventors: Brian E. Hardin, Erik Sauar, Dhea Suseno, Jesse J. Hinricher, Jennifer Huang, Tom Yu-Tang Lin, Stephen T. Connor, Daniel J. Hellebusch, Craig H. Peters
-
Publication number: 20170148933Abstract: Intercalation pastes for use with semiconductor devices are disclosed. The pastes contain precious metal particles, intercalating particles, and an organic vehicle and can be used to improve the material properties of metal particle layers. Specific formulations have been developed to be screen-printed directly onto a dried metal particle layer and fired to make a fired multilayer stack. The fired multilayer stack can be tailored to create a solderable surface, high mechanical strength, and low contact resistance. In some embodiments, the fired multilayer stack can etch through a dielectric layer to improve adhesion to a substrate. Such pastes can be used to increase the efficiency of silicon solar cells, specifically multi- and mono-crystalline silicon back-surface field (BSF), and passivated emitter and rear contact (PERC) photovoltaic cells. Other applications include integrated circuits and more broadly, electronic devices.Type: ApplicationFiled: November 23, 2016Publication date: May 25, 2017Inventors: Brian E. Hardin, Erik Sauar, Dhea Suseno, Jesse J. Hinricher, Jennifer Huang, Tom Yu-Tang Lin, Stephen T. Connor, Daniel J. Hellebusch, Craig H. Peters
-
Patent number: 9064147Abstract: Handwriting interpretation tools, such as optical character recognition (OCR), have improved over the years such that OCR is a common tool in business for interpreting typed text and sometimes handwritten text. OCR does not apply well to non-text-only diagrams, such as chemical structure diagrams. A method according to an embodiment of the present invention of interpreting a human-drawn sketch includes determining a local metric indicating whether a candidate symbol belongs to a certain classification based on a set of features. The set of features includes, as a feature, scores generated from feature images of the candidate symbol. Also included is determining a joint metric of multiple candidate symbols based on their respective classifications and interpreting the sketch as a function of the local and joint metrics.Type: GrantFiled: March 19, 2014Date of Patent: June 23, 2015Assignee: Massachusetts Institute of TechnologyInventors: Tom Yu Ouyang, Randall Davis
-
Publication number: 20140205188Abstract: Handwriting interpretation tools, such as optical character recognition (OCR), have improved over the years such that OCR is a common tool in business for interpreting typed text and sometimes handwritten text. OCR does not apply well to non-text-only diagrams, such as chemical structure diagrams. A method according to an embodiment of the present invention of interpreting a human-drawn sketch includes determining a local metric indicating whether a candidate symbol belongs to a certain classification based on a set of features. The set of features includes, as a feature, scores generated from feature images of the candidate symbol. Also included is determining a joint metric of multiple candidate symbols based on their respective classifications and interpreting the sketch as a function of the local and joint metrics.Type: ApplicationFiled: March 19, 2014Publication date: July 24, 2014Applicant: Massachusetts Institute of TechnologyInventors: Tom Yu Ouyang, Randall Davis
-
Patent number: 8718375Abstract: Handwriting interpretation tools, such as optical character recognition (OCR), have improved over the years such that OCR is a common tool in business for interpreting typed text and sometimes handwritten text. OCR does not apply well to non-text-only diagrams, such as chemical structure diagrams. A method according to an embodiment of the present invention of interpreting a human-drawn sketch includes determining a local metric indicating whether a candidate symbol belongs to a certain classification based on a set of features. The set of features includes, as a feature, scores generated from feature images of the candidate symbol. Also included is determining a joint metric of multiple candidate symbols based on their respective classifications and interpreting the sketch as a function of the local and joint metrics.Type: GrantFiled: December 2, 2011Date of Patent: May 6, 2014Assignee: Massachusetts Institute of TechnologyInventors: Tom Yu Ouyang, Randall Davis
-
Publication number: 20120141032Abstract: Handwriting interpretation tools, such as optical character recognition (OCR), have improved over the years such that OCR is a common tool in business for interpreting typed text and sometimes handwritten text. OCR does not apply well to non-text-only diagrams, such as chemical structure diagrams. A method according to an embodiment of the present invention of interpreting a human-drawn sketch includes determining a local metric indicating whether a candidate symbol belongs to a certain classification based on a set of features. The set of features includes, as a feature, scores generated from feature images of the candidate symbol. Also included is determining a joint metric of multiple candidate symbols based on their respective classifications and interpreting the sketch as a function of the local and joint metrics.Type: ApplicationFiled: December 2, 2011Publication date: June 7, 2012Applicant: Massachusetts Institute of TechnologyInventors: Tom Yu Ouyang, Randall Davis
-
Patent number: 7645696Abstract: Methods of depositing thin seed layers that improve continuity of the seed layer as well as adhesion to the barrier layer are provided. According to various embodiments, the methods involve performing an etchback operation in the seed deposition chamber prior to depositing the seed layer. The etch step removes barrier layer overhang and/or oxide that has formed on the barrier layer. It some embodiments, a small deposition flux of seed atoms accompanies the sputter etch flux of argon ions, embedding metal atoms into the barrier layer. The embedded metal atoms create nucleation sites for subsequent seed layer deposition, thereby promoting continuous seed layer film growth, film stability and improved seed layer-barrier layer adhesion.Type: GrantFiled: June 22, 2006Date of Patent: January 12, 2010Assignee: Novellus Systems, Inc.Inventors: Alexander Dulkin, Anil Vijayendran, Tom Yu, Daniel R. Juliano
-
Patent number: 6471831Abstract: A PVD system comprises a hollow cathode magnetron with a downstream plasma control mechanism. The magnetron has a hollow cathode with a non-planar target and at least one electromagnetic coil to generate and maintain a plasma within the cathode. The magnetron also has an anode located between the cathode and a downstream plasma control mechanism. The control mechanism comprises a first, second and third electromagnetic coil beneath a mouth of the target, vertically spaced so as to form a tapered magnetic convergent lens between the target mouth and a pedestal of the magnetron.Type: GrantFiled: January 9, 2001Date of Patent: October 29, 2002Assignee: Novellus Systems, Inc.Inventors: Jean Qing Lu, Tom Yu, Linda Stenzel, Jeffrey Tobin
-
Patent number: 6468404Abstract: A PVD system comprises a hollow cathode magnetron with a capability of producing a high magnetic field for PVD and a low magnetic field for pasting. The high magnetic field is used for PVD and causes an optimal uniform film to form on a substrate but redeposits some metals onto a top portion of a target within the magnetron. The low magnetic field erodes redeposited materials from a top portion of a target within the magnetron.Type: GrantFiled: January 23, 2001Date of Patent: October 22, 2002Assignee: Novellus Systems, Inc.Inventors: Jean Qing Lu, Tom Yu, Jeffrey Tobin
-
Patent number: D847344Type: GrantFiled: December 19, 2017Date of Patent: April 30, 2019Assignee: Western Clinical Engineering Ltd.Inventors: James A. McEwen, Michael Jameson, Kenneth L. Glinz, Jeswin Jeyasurya, Tom Yu Chia Lai
-
Patent number: D850631Type: GrantFiled: September 21, 2017Date of Patent: June 4, 2019Assignee: Western Clinical Engineering Ltd.Inventors: James Allen McEwen, Michael Jameson, Tom Yu Chia Lai, Jane Dorothea Procyshyn, Joshua Jonathan Sam