Patents by Inventor Tomohiro Okumura

Tomohiro Okumura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7407874
    Abstract: A plasma doping method that can control a dose precisely is realized. In-plane uniformity of the dose is improved. It has been found that, if a bias is applied by irradiating B2H6/He plasma onto a silicon substrate, there is a time at which a dose of boron is made substantially uniform, and the saturation time is comparatively long and ease to stably use, compared with a time at which repeatability of an apparatus control can be secured. The invention has been finalized focusing on the result. That is, if plasma irradiation starts, a dose is initially increased, but a time at which the dose is made substantially uniform without depending on a time variation is continued. In addition, if the time is further increased, the dose is decreased. The dose can be accurately controlled through a process window of the time at which the dose is made substantially uniform without depending on the time variation.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: August 5, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yuichiro Sasaki, Katsumi Okashita, Hiroyuki Ito, Bunji Mizuno, Tomohiro Okumura
  • Publication number: 20080166861
    Abstract: It is an object to prevent functions expected originally from being unexhibited when impurities to be introduced into a solid sample are mixed with each other, and to implement plasma doping with high precision. In order to distinguish impurities which may be mixed from impurities which should not be mixed, first of all, an impurity introducing mechanism of a core is first distinguished. In order to avoid a mixture of the impurities in very small amounts, a mechanism for delivering a semiconductor substrate to be treated and a mechanism for removing a resin material to be formed on the semiconductor substrate are used exclusively.
    Type: Application
    Filed: March 27, 2008
    Publication date: July 10, 2008
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Bunji Mizuno, Ichiro Nakayama, Yuichiro Sasaki, Tomohiro Okumura, Cheng-Guo Jin, Hiroyuki Ito
  • Publication number: 20080146009
    Abstract: To provide an impurity introducing method which can repeatedly carry out such a process that plasma irradiation for realization of amorphous and plasma doping were combined, in such a situation that steps are simple and through-put is high, without destroying an apparatus. At the time of switching over plasmas which are used in plasma irradiation for realization of amorphous and plasma doping, electric discharge is stopped, and an initial condition of a matching point of a high frequency power supply and a peripheral circuit is reset so as to adapt to plasma which is used in each step, or at the time of switching, a load, which is applied to the high frequency power supply etc., is reduced by increasing pressure and decreasing a bias voltage.
    Type: Application
    Filed: February 4, 2005
    Publication date: June 19, 2008
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Yuichiro Sasaki, Tomohiro Okumura, Bunji Mizuno, Cheng-Guo Jin, Ichiro Nakayama, Satoshi Maeshima, Katsumi Okashita
  • Patent number: 7358511
    Abstract: A plasma doping method, even though a plasma doping treatment is repeated, can make a dose from a film to a silicon substrate uniform for each time. The method includes preparing a vacuum chamber having a film containing an impurity formed on an inner wall thereof such that, when the film is attacked by ions in plasma, the amount of an impurity to be doped into the surface of a sample by sputtering is not changed even though the plasma containing the impurity ions is repeatedly generated in the vacuum chamber; placing the sample on the sample electrode; and irradiating the plasma containing the impurity ions so as to implant the impurity ions into the sample, and doping the impurity into the sample by sputtering from the film containing the impurity fixed to the inner wall of the vacuum chamber.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: April 15, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yuichiro Sasaki, Katsumi Okashita, Hiroyuki Ito, Bunji Mizuno, Tomohiro Okumura
  • Patent number: 7348264
    Abstract: A plasma doping method that can control a dose precisely is realized. In-plane uniformity of the dose is improved. It has been found that, if a bias is applied by irradiating B2H6/He plasma onto a silicon substrate, there is a time at which a dose of boron is made substantially uniform, and the saturation time is comparatively long and ease to stably use, compared with a time at which repeatability of an apparatus control can be secured. The invention has been finalized focusing on the result. That is, if plasma irradiation starts, a dose is initially increased, but a time at which the dose is made substantially uniform without depending on a time variation is continued. In addition, if the time is further increased, the dose is decreased. The dose can be accurately controlled through a process window of the time at which the dose is made substantially uniform without depending on the time variation.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: March 25, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yuichiro Sasaki, Katsumi Okashita, Hiroyuki Ito, Bunji Mizuno, Tomohiro Okumura
  • Publication number: 20080067439
    Abstract: A plasma doping method, even though a plasma doping treatment is repeated, can make a dose from a film to a silicon substrate uniform for each time. The method includes preparing a vacuum chamber having a film containing an impurity formed on an inner wall thereof such that, when the film is attacked by ions in plasma, the amount of an impurity to be doped into the surface of a sample by sputtering is not changed even though the plasma containing the impurity ions is repeatedly generated in the vacuum chamber; placing the sample on the sample electrode; and irradiating the plasma containing the impurity ions so as to implant the impurity ions into the sample, and doping the impurity into the sample by sputtering from the film containing the impurity fixed to the inner wall of the vacuum chamber.
    Type: Application
    Filed: May 15, 2007
    Publication date: March 20, 2008
    Inventors: Yuichiro Sasaki, Katsumi Okashita, Hiroyuki Ito, Bunji Mizuno, Tomohiro Okumura
  • Publication number: 20080061292
    Abstract: The invention provides a method of doping impurities that includes a step of doping impurities in a solid base substance by using a plasma doping method, a step of forming a light antireflection layer that functions to reduce light reflection on the surface of the solid base substance, and a step of performing annealing by light radiation. According to the method, it is possible to reduce the reflectance of light radiated during annealing, to efficiently apply energy an impurity doped layer, to improve activation efficiency, to prevent diffusion, and to reduce sheet resistance of the impurity doped layer.
    Type: Application
    Filed: May 19, 2005
    Publication date: March 13, 2008
    Inventors: Cheng-Guo Jin, Yuichiro Sasaki, Bunji Mizuno, Katsumi Okashita, Hiroyuki Ito, Tomohiro Okumura, Satoshi Maeshima, Ichiro Nakayama
  • Patent number: 7331306
    Abstract: A plasma processing method includes exhausting the interior of a vacuum chamber while supplying gas into the vacuum chamber while maintaining the interior of the vacuum chamber at a desired pressure. A high-frequency power of 100 kHz to 100 MHz is applied to a coil provided in the vicinity of a dielectric window which faces a substrate placed on a substrate electrode in the vacuum. Plasma is generated in the vacuum chamber to process the substrate or a film on the substrate. Particles which tend to move straight from a surface of the substrate or from a surface of the film on the substrate toward a wall surface of the dielectric window inside the vacuum chamber are kept interrupted by a metal plate.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: February 19, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tomohiro Okumura, Takayuki Kai, Yoichiro Yashiro
  • Patent number: 7329989
    Abstract: A fluorine-containing precoating is formed to cover a phosphor particle by, for example, a physical vapor deposition of a fluoride. Then, a fluorine-containing coating covering the phosphor particle is formed by supplying fluorine into the precoating. This obtained phosphor particle with the coating is applied in the form of a paste to a substrate on each electrode between two adjacent ribs to form a phosphor layer including phosphor particles between the ribs on the substrate. The substrate is positioned with respect to another substrate having electrodes thereon to form discharge spaces between the substrates. The discharge spaces are filled with a discharge gas to produce a plasma display panel.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: February 12, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tomohiro Okumura, Mitsuo Saitoh, Masashi Morita, Takafumi Okuma, Masaharu Terauchi, Junko Asayama
  • Publication number: 20070292634
    Abstract: A plasma display panel (PDP) and a method of manufacturing the same suppresses variation in the height of the intersecting barrier walls with a simple method and that prevents cross talk from occurring between the discharge cells. A concave part is formed at a position contacting an intersecting part of a first barrier wall before baking and a second barrier wall before baking orthogonal to the first barrier wall before baking. When such concave part is formed, the values of the surface area per volume of the intersecting part and the surface area per volume of the first barrier wall before baking and the second barrier wall before baking between the intersecting part and the intersecting part adjacent to the intersecting part become substantially equal. As a result, the height of the intersecting part does not become high after baking, a barrier wall of aligned height is obtained, and cross talk does not occur between the discharge cells.
    Type: Application
    Filed: June 14, 2007
    Publication date: December 20, 2007
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Takayuki ABE, Yoshiyasu HONMA, Tomohiro OKUMURA, Keisuke OKADA, Kazuto FUKUDA
  • Publication number: 20070241691
    Abstract: A method for restoring the function of a plasma display panel according to the present invention restores a function of a plasma display panel by raising the temperature of the plasma display panel to 400° C. to 800° C.
    Type: Application
    Filed: June 13, 2007
    Publication date: October 18, 2007
    Inventors: Tomohiro Okumura, Mitsuo Saitoh, Masashi Morita, Masaharu Terauchi, Asayama Junko
  • Patent number: 7280202
    Abstract: In an ingredient analysis method and an ingredient analysis apparatus in accordance with the present invention, high-frequency power is supplied from a power source 4 while helium gas is supplied to an atmospheric pressure plasma source 2 disposed near a substance to be analyzed, whereby plasma 5 is generated, and the substance to be analyzed is exposed to the plasma 5 and emits light. The light is guided to a filter 7 and a photodiode 8 via an optical fiber 6 and subjected to photoelectrical conversion. The signal obtained by the photoelectrical conversion is sent to a controller 9. The controller 9 judges whether a specific element is present or not in the substance to be analyzed.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: October 9, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tomohiro Okumura, Mitsuo Saitoh
  • Publication number: 20070232181
    Abstract: A fluorine-containing precoating is formed to cover a phosphor particle by, for example, a physical vapor deposition of a fluoride. Then, a fluorine-containing coating covering the phosphor particle is formed by supplying fluorine into the precoating. This obtained phosphor particle with the coating is applied in the form of a paste to a substrate on each electrode between two adjacent ribs to form a phosphor layer including phosphor particles between the ribs on the substrate. The substrate is positioned with respect to another substrate having electrodes thereon to form discharge spaces between the substrates. The discharge spaces are filled with a discharge gas to produce a plasma display panel.
    Type: Application
    Filed: May 25, 2007
    Publication date: October 4, 2007
    Inventors: Tomohiro Okumura, Mitsuo Saitoh, Masashi Morita, Takafumi Okuma, Masaharu Terauchi, Junko Asayama
  • Publication number: 20070212837
    Abstract: An object is to provide a semiconductor device in which uniform properties are intended and high yields are provided. Process steps are provided in which variations are adjusted in doping and annealing process steps that are subsequent process steps so as to cancel in-plane variations in a substrate caused by dry etching to finally as well provide excellent in-plane consistency in a substrate.
    Type: Application
    Filed: May 12, 2005
    Publication date: September 13, 2007
    Inventors: Bunji Mizuno, Yuichiro Sasaki, Ichiro Nakayama, Hiroyuki Ito, Tomohiro Okumura, Cheng-Guo Jin, Katsumi Okashita, Hisataka Kanada
  • Publication number: 20070190759
    Abstract: A plasma doping method that can control a dose precisely is realized. In-plane uniformity of the dose is improved. It has been found that, if a bias is applied by irradiating B2H6/He plasma onto a silicon substrate, there is a time at which a dose of boron is made substantially uniform, and the saturation time is comparatively long and ease to stably use, compared with a time at which repeatability of an apparatus control can be secured. The invention has been finalized focusing on the result. That is, if plasma irradiation starts, a dose is initially increased, but a time at which the dose is made substantially uniform without depending on a time variation is continued. In addition, if the time is further increased, the dose is decreased. The dose can be accurately controlled through a process window of the time at which the dose is made substantially uniform without depending on the time variation.
    Type: Application
    Filed: April 30, 2007
    Publication date: August 16, 2007
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yuichiro Sasaki, Katsumi Okashita, Hiroyuki Ito, Bunji Mizuno, Tomohiro Okumura
  • Publication number: 20070176124
    Abstract: Disclosed is a plasma doping method that, even though a plasma doping treatment is repeated, can make a dose from a film to a silicon substrate uniform for each time. According to an embodiment of the invention, there is provided a plasma doping method that places a sample on a sample electrode in a vacuum chamber, generates plasma in the vacuum chamber, and causes impurity ions in the plasma to collide against a surface of the sample so as to form an impurity doped layer in the surface of the sample.
    Type: Application
    Filed: March 30, 2007
    Publication date: August 2, 2007
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Yuichiro Sasaki, Katsumi Okashita, Hiroyuki Ito, Bunji Mizuno, Tomohiro Okumura
  • Publication number: 20070166846
    Abstract: A plasma doping method that can control a dose precisely is realized. In-plane uniformity of the dose is improved. It has been found that, if a bias is applied by irradiating B2H6/He plasma onto a silicon substrate, there is a time at which a dose of boron is made substantially uniform, and the saturation time is comparatively long and ease to stably use, compared with a time at which repeatability of an apparatus control can be secured. The invention has been finalized focusing on the result. That is, if plasma irradiation starts, a dose is initially increased, but a time at which the dose is made substantially uniform without depending on a time variation is continued. In addition, if the time is further increased, the dose is decreased. The dose can be accurately controlled through a process window of the time at which the dose is made substantially uniform without depending on the time variation.
    Type: Application
    Filed: December 29, 2006
    Publication date: July 19, 2007
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yuichiro Sasaki, Katsumi Okashita, Hiroyuki Ito, Bunji Mizuno, Tomohiro Okumura
  • Patent number: 7232591
    Abstract: Provided is a plasma processing method and apparatus and a tray for plasma processing, which are able to improve temperature controllability of a substrate. If a vacuum chamber is evacuated by a pump while introducing a specified gas by a gas supply unit into the vacuum chamber and a high-frequency power is applied by a coil use high-frequency power supply to a coil while maintaining an interior of the vacuum chamber at a specified pressure, then plasma is generated in the vacuum chamber, and a substrate placed on a substrate electrode can be subjected to plasma processing. At this time, by providing an adhesive sheet between the substrate electrode and the substrate, temperature controllability of the substrate can be improved.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: June 19, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tomohiro Okumura, Toshinari Nitta
  • Publication number: 20070111548
    Abstract: Disclosed is a plasma doping method that, even though a plasma doping treatment is repeated, can make a dose from a film to a silicon substrate uniform for each time. According to an embodiment of the invention, there is provided a plasma doping method that places a sample on a sample electrode in a vacuum chamber, generates plasma in the vacuum chamber, and causes impurity ions in the plasma to collide against a surface of the sample so as to form an impurity doped layer in the surface of the sample.
    Type: Application
    Filed: December 29, 2006
    Publication date: May 17, 2007
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yuichiro Sasaki, Katsumi Okashita, Hiroyuki Ito, Bunji Mizuno, Tomohiro Okumura
  • Publication number: 20070074813
    Abstract: A method for impurity implantation, in which a substrate is positioned on a table provided within a chamber in which a vacuum will be introduced and also an implantation impurity is supplied. A first high frequency electric power is applied to a plasma generating element to thereby generate a plasma so that the impurity in the chamber is implanted in the substrate. Also, a second high frequency electric power is applied to the table. Detected are a condition of the plasma in the chamber and a voltage or current in the table. A controller controls at least one of the first and second high frequency electric power sources according to the detected condition of the plasma and/or the detected voltage or current, thereby controlling an implantation concentration of the impurity to be implanted.
    Type: Application
    Filed: November 22, 2006
    Publication date: April 5, 2007
    Inventors: Tomohiro Okumura, Ichiro Nakayama, Bunji Mizuno