Patents by Inventor Tomohiro Sakai

Tomohiro Sakai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11239463
    Abstract: To provide a process for producing a cathode active material capable of obtaining a lithium ion secondary battery which has a high discharge capacity and a high initial efficiency, a cathode active material, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery. A process for producing a cathode active material, which comprises a mixing step of mixing a lithium compound, an alkali metal compound other than Li, and a transition metal-containing compound containing at least Ni and Mn to obtain a mixture, a step of firing the mixture at a temperature of from 900 to 1,100° C. to obtain a first lithium-containing composite oxide containing the alkali metal other than Li, and a step of removing the alkali metal other than Li from the first lithium-containing composite oxide to obtain a second lithium-containing composite oxide represented by the following formula: aLi(Li1/3Mn2/3)O2·(1?a)LiMO2 wherein 0<a<1, and M is an element containing at least Ni and Mn.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: February 1, 2022
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Tomohiro Sakai
  • Publication number: 20210408361
    Abstract: A piezoelectric element includes: a first electrode and a second electrode; and a piezoelectric layer provided between the first electrode and the second electrode and having a perovskite structure, in which 0<P1/P2?0.5 and 0<P1 where, when a positive predetermined voltage is applied to the piezoelectric layer, then a voltage applied to the piezoelectric layer is set to 0 V for 0.1 seconds, and then a triangular wave voltage waveform having a maximum voltage of the predetermined voltage is applied to the piezoelectric layer to obtain a hysteresis curve drawn counterclockwise, P1 is a residual polarization amount at a start point of the hysteresis curve and P2 is a residual polarization amount at an end point of the hysteresis curve.
    Type: Application
    Filed: June 29, 2021
    Publication date: December 30, 2021
    Inventors: Yasuaki HAMADA, Tomohiro SAKAI
  • Publication number: 20210399205
    Abstract: A piezoelectric element 1 includes a first electrode 20, a second electrode 40, and a piezoelectric layer 30 provided between the first electrode 20 and the second electrode 40. The piezoelectric layer 30 is composed of a composite oxide having a perovskite-type structure and containing potassium (K), sodium (Na), and niobium (Nb), and has a first peak derived from a (100) plane, a second peak derived from a (010) plane, and a third peak derived from a (001) plane in an X-ray diffraction pattern obtained by ?-2? measurement.
    Type: Application
    Filed: June 16, 2021
    Publication date: December 23, 2021
    Inventors: Tomohiro SAKAI, Yasuaki HAMADA
  • Patent number: 11165060
    Abstract: To provide a cathode active material with which it is possible to obtain a lithium ion secondary battery having a high discharge capacity and being excellent in the cycle characteristic, and its production process. A cathode active material, comprising particles of a lithium-containing composite oxide, the lithium-containing composite oxide being represented by Li?NiaCobMncTidMeO2+? wherein ? is from 1 to 1.8, a is from 0.15 to 0.5, b is from 0 to 0.09, c is from 0.33 to 0.8, d is from 0.01 to 0.1, e is from 0 to 0.1, ? is from 0 to 0.8, a+b+c+d+e=1, and M is Mg, Al, Ca or the like, wherein in an X-ray diffraction pattern, the ratio (H020/H003) of the height of a peak of (020) plane assigned to a crystal structure with space group C2/m to the height of a peak of (003) plane assigned to a crystal structure with space group R-3m is at least 0.02, and D90/D10 is at most 4.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: November 2, 2021
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Tomohiro Sakai
  • Patent number: 11122187
    Abstract: This embodiment relates to a transmitter and the like that prevent an increase of the number of cables of an external interface even when the types of signals to be transmitted increase. The transmitter includes a latch circuit, an encoder, a serializer, and a selector. The latch circuit keeps a level of each of a plurality of signals at the timing specified by a sampling clock, and then, outputs the plurality of signals as a parallel data signal. The encoder generates an encoded parallel data signal based on the parallel data signal from the latch circuit. The serializer generates a serial data signal based on the encoded parallel data signal from the encoder. The sampling clock has a frequency higher than a transmission rate of the fastest signal of the plurality of signals.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: September 14, 2021
    Assignee: THINE ELECTRONICS, INC.
    Inventors: Tomohiro Sakai, Kazuhisa Sasaki, Satoshi Miura, Daisuke Iwama
  • Publication number: 20210249684
    Abstract: A glass frit includes a glass which contains: Li; at least one selected from the group consisting of B, Si, P, Ge, and Te; O; and at least one selected from the group consisting of F, Cl, Br, and I. The glass is to turn into a crystallized glass including an amorphous phase and a crystalline phase, the crystalline phase precipitated by a heat treatment at a temperature equal to or higher than a glass transition temperature and equal to or lower than a glass crystallization temperature. The crystallized glass shows diffraction peaks at 2?=22.8±0.5°, 2?=32.1±0.5° and 2?=39.6±0.5° in a powder X-ray diffraction pattern using Cu—K? radiation.
    Type: Application
    Filed: April 27, 2021
    Publication date: August 12, 2021
    Applicant: AGC Inc.
    Inventors: Takeya MEZAKI, Noriyoshi KAYABA, Tomohiro SAKAI
  • Patent number: 11038167
    Abstract: A cathode active material for a positive electrode for a lithium ion secondary battery, comprising a lithium-containing composite oxide represented by aLi(Li1/3Mn2/3)O2·(1-a)LiMO2 (M: at least one transition metal element selected from Ni, Co and Mn, and 0<a<1), wherein in an X-ray diffraction pattern of the lithium-containing composite oxide, the ratio of the height (H020) of a peak of (020) plane assigned to a crystal structure with space group C2/m to the height (H003) of a peak of (003) plane assigned to a crystal structure with space group R-3m (i.e. H020/H003) is at most 0.038, and the ratio of the height (H110) of a peak of (110) plane assigned to a crystal structure with space group C2/m to the height (H003) of a peak of (003) plane assigned to a crystal structure with space group R-3m (i.e. H110/H003) is at most 0.013.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: June 15, 2021
    Assignee: SUMITOMO CHEMICAL CO., LTD.
    Inventors: Tomohiro Sakai, Tsubasa Takasugi
  • Patent number: 11014357
    Abstract: A piezoelectric element includes: a first electrode and a second electrode; and a piezoelectric layer provided between the first electrode and the second electrode, where: the piezoelectric layer contains a complex oxide having a perovskite structure and including potassium, sodium, and niobium; on a cross-section of the piezoelectric layer, a standard deviation of values that are obtained by normalizing sodium atom concentrations in eight regions by an average value of the sodium atom concentrations in the eight regions is 0.140 or less; each of the regions includes a central line of the piezoelectric layer; each of the regions is a square having a size in a thickness direction of the piezoelectric layer and a size in a direction orthogonal to the thickness direction of 150 nm; and the eight regions are aligned in the direction orthogonal to the thickness direction.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: May 25, 2021
    Assignee: Seiko Epson Corporation
    Inventors: Tomohiro Sakai, Kazuya Kitada, Yasumi Ikehara
  • Patent number: 10951887
    Abstract: There is provided an imaging apparatus including a distribution unit configured to distribute a playlist, in which information relating to a plurality of moving image streams can be described, when a distribution request of the playlist is received, and a coding unit configured to encode a moving image frame corresponding to a moving image stream described in the playlist through intraframe coding before receiving a distribution request of a specific moving image stream when the distribution request of the playlist is received, wherein, when the distribution request of the specific moving image stream is received, the distribution unit distributes a moving image stream corresponding to the specific moving image stream including the moving image frame encoded through intraframe coding.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: March 16, 2021
    Assignee: Canon Kabushiki Kaisha
    Inventor: Tomohiro Sakai
  • Patent number: 10937942
    Abstract: A piezoelectric element includes a substrate, a first electrode formed on the substrate, a piezoelectric layer, which is a layered structure of a plurality of piezoelectric films each containing potassium, sodium, and niobium, formed on the first electrode, and a second electrode formed on the piezoelectric layer. A sodium concentration in the piezoelectric layer has a Na local maximum value, which is a local maximum value of the sodium concentration, in a first piezoelectric film, which is among the plurality of piezoelectric films, in the vicinity of the first electrode, a sodium concentration gradient decreasing from the Na local maximum value toward the second electrode, and a Na local minimum value, which is a local minimum value of the sodium concentration, near a boundary between the first piezoelectric film and a second piezoelectric film formed immediately above the first piezoelectric film.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: March 2, 2021
    Inventors: Kazuya Kitada, Koji Sumi, Tomohiro Sakai, Toshiaki Takahashi, Tsutomu Asakawa
  • Patent number: 10811682
    Abstract: To provide a cathode active material capable of obtaining a lithium ion secondary battery which has a high discharge capacity and of which a decrease of the discharge capacity when a charge and discharge cycle is repeatedly carried out is suppressed, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery. A cathode active material comprising a lithium-containing composite oxide represented by the formula aLi(Li1/3Mn2/3)O2.(1?a)LiMO2 (wherein M is an element containing at least Ni and Mn, and 0<a<1), wherein in an X-ray diffraction pattern, the integral breadth of a peak of (110) plane assigned to a crystal structure with space group C2/m is at most 1.25 deg.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: October 20, 2020
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Tomohiro Sakai
  • Publication number: 20200317563
    Abstract: To provide a colored optical layer capable of forming a solar cell module excellent in the design, and the power generation efficiency and the weather resistance, a method for producing an optical layer, an optical layer-provided solar cell module, an outer wall material for building, and a building. An optical layer having a functional layer containing an inorganic pigment and a matrix in which the inorganic pigment is dispersed, to be disposed on the side of plane of incidence of sunlight from solar cells, wherein at least a part of the inorganic pigment is an inorganic pigment having a maximum near infrared reflectance in a near infrared region at a wavelength of from 780 to 1,500 nm of at least 50%, an average particle size of from 5.0 to 280.0 nm and a specific surface area of from 5.0 to 1,000 m2/g.
    Type: Application
    Filed: June 4, 2020
    Publication date: October 8, 2020
    Applicants: AGC Inc., AGC CLASS EUROPE
    Inventors: Tomohiro SAKAI, Yasuo SUGAWARA, Yu ONOZAKI, Noriyoshi KAYABA, Yuichi KUWAHARA
  • Publication number: 20200314293
    Abstract: This embodiment relates to a transmitter and the like that prevent an increase of the number of cables of an external interface even when the types of signals to be transmitted increase. The transmitter includes a latch circuit, an encoder, a serializer, and a selector. The latch circuit keeps a level of each of a plurality of signals at the timing specified by a sampling clock, and then, outputs the plurality of signals as a parallel data signal. The encoder generates an encoded parallel data signal based on the parallel data signal from the latch circuit. The serializer generates a serial data signal based on the encoded parallel data signal from the encoder. The sampling clock has a frequency higher than a transmission rate of the fastest signal of the plurality of signals.
    Type: Application
    Filed: March 25, 2020
    Publication date: October 1, 2020
    Applicant: THINE ELECTRONICS, INC.
    Inventors: Tomohiro SAKAI, Kazuhisa SASAKI, Satoshi MIURA, Daisuke IWAMA
  • Publication number: 20200295705
    Abstract: To provide a coating material capable of forming a solar cell module excellent in the weather resistance, the power generation efficiency and the design, a cover glass, a solar cell module comprising the cover glass, and an outer wall material for building. The cover glass of the present invention is a cover glass comprising a glass plate and a layer containing a fluorinated polymer having units based on a fluoroolefin, on at least one surface of the glass plate, which has an average visible reflectance of from 10 to 100%, and an average near infrared transmittance of from 20 to 100%.
    Type: Application
    Filed: June 4, 2020
    Publication date: September 17, 2020
    Applicants: AGC Inc., AGC GLASS EUROPE
    Inventors: Yu ONOZAKI, Tomohiro Sakai, Shun Saito, Noriyoshi Kayaba, Aichi Inoue, Tetsuji Irie
  • Patent number: 10763504
    Abstract: To provide a transition metal-containing hydroxide, which is a precursor of a lithium-containing composite oxide, with which it is possible to obtain a lithium ion secondary battery excellent in the discharge capacity and cycle characteristics, by using as a cathode active material a lithium-containing composite oxide obtained from the hydroxide. A transition metal-containing hydroxide, which is a precursor of a lithium-containing composite oxide, wherein in a distribution of the logarithmic derivative pore specific surface area relative to the pore size, obtained by BJH method, the proportion of the sum of the logarithmic derivative pore specific surface areas with pore sizes of 10 nm or larger, to 100% of the sum of the logarithmic derivative pore specific surface areas in the entire distribution, is at least 23%.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: September 1, 2020
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Tomohiro Sakai
  • Publication number: 20200266436
    Abstract: To provide a process for producing a cathode active material capable of obtaining a lithium ion secondary battery which has a high discharge capacity and a high initial efficiency, a cathode active material, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery. A process for producing a cathode active material, which comprises a mixing step of mixing a lithium compound, an alkali metal compound other than Li, and a transition metal-containing compound containing at least Ni and Mn to obtain a mixture, a step of firing the mixture at a temperature of from 900 to 1,100° C. to obtain a first lithium-containing composite oxide containing the alkali metal other than Li, and a step of removing the alkali metal other than Li from the first lithium-containing composite oxide to obtain a second lithium-containing composite oxide represented by the following formula: aLi(Li1/3Mn2/3)O2. (1?a)LiMO2 wherein 0<a<1, and M is an element containing at least Ni and Mn.
    Type: Application
    Filed: November 9, 2016
    Publication date: August 20, 2020
    Applicant: Sumitomo Chemical Company, Limited
    Inventor: Tomohiro SAKAI
  • Patent number: 10742455
    Abstract: An equalizer adjusting device includes a comparator, an inequality counter, an adjuster, and the like. The comparator performs magnitude comparison between a voltage value Vout of each bit output from an equalizer and a threshold value MonLVL and outputs a logical value MonSMP according to a result of the comparison. The inequality counter inputs a logical value DatSMP output from a sampler in accordance with the result of magnitude comparison between the voltage value Vout of each bit and a reference value, and the logical value MonSMP output from the comparator and counts events in which the logical value DatSMP and the logical value MonSMP differ from each other, every period. The adjuster adjusts a gain of the equalizer and the threshold value MonLVL of the comparator based on a counted value of the inequality counter.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: August 11, 2020
    Assignee: THINE ELECTRONICS, INC.
    Inventor: Tomohiro Sakai
  • Publication number: 20200238702
    Abstract: A piezoelectric element includes: a first electrode and a second electrode; and a piezoelectric layer provided between the first electrode and the second electrode, where: the piezoelectric layer contains a complex oxide having a perovskite structure and including potassium, sodium, and niobium; on a cross-section of the piezoelectric layer, a standard deviation of values that are obtained by normalizing sodium atom concentrations in eight regions by an average value of the sodium atom concentrations in the eight regions is 0.140 or less; each of the regions includes a central line of the piezoelectric layer; each of the regions is a square having a size in a thickness direction of the piezoelectric layer and a size in a direction orthogonal to the thickness direction of 150 nm; and the eight regions are aligned in the direction orthogonal to the thickness direction.
    Type: Application
    Filed: January 28, 2020
    Publication date: July 30, 2020
    Inventors: Tomohiro SAKAI, Kazuya Kitada, Yasumi Ikehara
  • Patent number: 10608165
    Abstract: Provided is a piezoelectric element including a first electrode provided above a substrate, a piezoelectric layer provided above the first electrode, containing potassium, sodium, and niobium, and having a perovskite structure, and a second electrode provided above the piezoelectric layer. In a case where the piezoelectric layer is divided into two portions at a center thereof in a thickness direction, the piezoelectric layer includes a first portion on the first electrode side and a second portion on the second electrode side. The piezoelectric layer includes line defects. A density of the line defects in the second portion is higher than a density of the line defects in the first portion.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: March 31, 2020
    Assignee: Seiko Epson Corportion
    Inventors: Tomohiro Sakai, Koichi Morozumi, Kazuya Kitada, Harunobu Koike, Koji Sumi
  • Publication number: 20200075787
    Abstract: To provide a cover glass for a solar cell module which can sufficiently maintain the power generation efficiency of a solar cell module, even when a design is imparted to the entire surface of the cover glass so as to make solar cells be invisible from the outside, and a solar cell module. To provide a cover glass 14 to be bonded on light-receiving surfaces 16A and 16B of solar cells 16 via an encapsulant material 18, which has a visible transmittance of from 0% to 60% and an average infrared transmittance of from 20% to 100%, which is a value calculated by simply averaging transmittances at 5 nm intervals in an infrared region at a wavelength of from 780 nm to 1,500 nm.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 5, 2020
    Applicants: AGC Inc, AGC GLASS EUROPE
    Inventors: Tomohiro SAKAI, Tetsuji IRIE, Yu ONOZAKI, Aichi INOUE, Manabu NISHIZAWA, Hiroyuki YAMAMOTO