Patents by Inventor Tomohiro Sakai

Tomohiro Sakai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200045096
    Abstract: A video data transmission apparatus that transmits video data including a plurality of frame images in units of segment data of a predetermined segment time includes a generation unit, a reception unit, a determination unit and a transmission unit. The generation unit generates the plurality of frame images of a predetermined frame period. The reception unit receives specification information that specifies a length of the segment time from an external apparatus. The determination unit determines the length of the segment time based on the predetermined frame period and the specification information. The transmission unit transmits information for acquiring the segment data, the information indicating the length of the segment time determined by the determination unit, to the external device.
    Type: Application
    Filed: July 25, 2019
    Publication date: February 6, 2020
    Inventor: Tomohiro Sakai
  • Publication number: 20200035905
    Abstract: A piezoelectric element includes a piezoelectric layer formed as a stacked structure of first, second, and third piezoelectric films. The first piezoelectric film is formed on a first electrode. The second piezoelectric film is formed on the first piezoelectric film. The third piezoelectric film is formed on the second piezoelectric film. Each of the first, second, and third piezoelectric films includes potassium, sodium, and niobium. A second electrode is formed on the piezoelectric layer. A concentration of sodium in the first piezoelectric film is greater than a concentration of sodium in the second piezoelectric film. The concentration of sodium in the second piezoelectric film is greater than a concentration of sodium in the third piezoelectric film.
    Type: Application
    Filed: May 23, 2019
    Publication date: January 30, 2020
    Inventors: Tomohiro SAKAI, Kazuya KITADA, Koji SUMI
  • Publication number: 20200021468
    Abstract: An equalizer adjusting device includes a comparator, an inequality counter, an adjuster, and the like. The comparator performs magnitude comparison between a voltage value Vout of each bit output from an equalizer and a threshold value MonLVL and outputs a logical value MonSMP according to a result of the comparison. The inequality counter inputs a logical value DatSMP output from a sampler in accordance with the result of magnitude comparison between the voltage value Vout of each bit and a reference value, and the logical value MonSMP output from the comparator and counts events in which the logical value DatSMP and the logical value MonSMP differ from each other, every period. The adjuster adjusts a gain of the equalizer and the threshold value MonLVL of the comparator based on a counted value of the inequality counter.
    Type: Application
    Filed: July 11, 2019
    Publication date: January 16, 2020
    Applicant: THINE ELECTRONICS, INC.
    Inventor: Tomohiro SAKAI
  • Patent number: 10427981
    Abstract: A piezoelectric material contains: a first component which is a rhombohedral crystal in a single composition, has a Curie temperature Tc1, and is a lead-free-system composite oxide having a perovskite-type structure; a second component which is a crystal other than the rhombohedral crystal in a single composition, has a Curie temperature Tc2<Tc1, and is a lead-free-system composite oxide having a perovskite-type structure; and a third component which is a crystal other than the rhombohedral crystal in a single composition similar to the second component, has a Curie temperature Tc3?Tc1, and is a lead-free-system composite oxide that has a perovskite-type structure and is different from the second component. When a molar ratio of the third component to the sum of the second component and the third component is ? and ?×Tc3+(1??)×Tc2 is Tc4, |Tc4?Tc2|?50° C.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: October 1, 2019
    Assignee: Seiko Epson Corporation
    Inventors: Koji Sumi, Kazuya Kitada, Tomohiro Sakai, Yasuaki Hamada, Tetsuya Isshiki, Satoshi Kimura, Akio Ito, Tsuneo Handa
  • Publication number: 20190296347
    Abstract: To provide a cathode active material with which it is possible to obtain a lithium ion secondary battery having a high discharge capacity and being excellent in the cycle characteristic, and its production process. A cathode active material, comprising particles of a lithium-containing composite oxide, the lithium-containing composite oxide being represented by Li?NiaCobMncTidMeO2+? wherein ? is from 1 to 1.8, a is from 0.15 to 0.5, b is from 0 to 0.09, c is from 0.33 to 0.8, d is from 0.01 to 0.1, e is from 0 to 0.1, ? is from 0 to 0.8, a+b+c+d+e=1, and M is Mg, Al, Ca or the like, wherein in an X-ray diffraction pattern, the ratio (H020/H003) of the height of a peak of (020) plane assigned to a crystal structure with space group C2/m to the height of a peak of (003) plane assigned to a crystal structure with space group R-3m is at least 0.02, and D90/D10 is at most 4.
    Type: Application
    Filed: May 22, 2017
    Publication date: September 26, 2019
    Inventor: Tomohiro SAKAI
  • Publication number: 20190252678
    Abstract: To provide a cathode active material capable of obtaining a lithium ion secondary battery which has a high discharge capacity and of which a decrease of the discharge capacity when a charge and discharge cycle is repeatedly carried out is suppressed, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery. A cathode active material comprising a lithium-containing composite oxide represented by the formula aLi(Li1/3Mn2/3)O2.(1?a)LiMO2 (wherein M is an element containing at least Ni and Mn, and 0<a<1), wherein in an X-ray diffraction pattern, the integral breadth of a peak of (110) plane assigned to a crystal structure with space group C2/m is at most 1.25 deg.
    Type: Application
    Filed: November 9, 2016
    Publication date: August 15, 2019
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Tomohiro SAKAI
  • Patent number: 10355196
    Abstract: A piezoelectric element includes a first electrode, a piezoelectric layer formed of a first piezoelectric film which is formed on the first electrode and which includes potassium, sodium, and niobium and a plurality of second piezoelectric films which are formed on the first piezoelectric film and which include potassium, sodium, and niobium, and a second electrode formed on the piezoelectric layer, in which the piezoelectric layer is a stack of a plurality of piezoelectric films, the first piezoelectric film has a thickness of 30 nm to 70 nm, a concentration of sodium in each of the piezoelectric films is along a gradient in the film thickness direction with the first electrode side being high and the second electrode side being low.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: July 16, 2019
    Assignee: Seiko Epson Corporation
    Inventors: Tomohiro Sakai, Kazuya Kitada, Koji Sumi
  • Publication number: 20190198750
    Abstract: Provided is a piezoelectric element including a first electrode provided above a substrate, a piezoelectric layer provided above the first electrode, containing potassium, sodium, and niobium, and having a perovskite structure, and a second electrode provided above the piezoelectric layer. In a case where the piezoelectric layer is divided into two portions at a center thereof in a thickness direction, the piezoelectric layer includes a first portion on the first electrode side and a second portion on the second electrode side. The piezoelectric layer includes line defects. A density of the line defects in the second portion is higher than a density of the line defects in the first portion.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 27, 2019
    Inventors: Tomohiro SAKAI, Koichi MOROZUMI, Kazuya KITADA, Harunobu KOIKE, Koji SUMI
  • Patent number: 10297742
    Abstract: A piezoelectric element includes a first and a second electrode, a piezoelectric layer between the first electrode and the second electrode, and an orientation control layer between the first electrode and the piezoelectric layer. The orientation control layer contains perovskite complex oxide containing potassium, sodium, calcium, and niobium and preferentially oriented in the (100) plane.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: May 21, 2019
    Assignee: Seiko Epson Corporation
    Inventors: Koji Sumi, Tomohiro Sakai, Tetsuya Isshiki, Toshiaki Takahashi, Kazuya Kitada
  • Patent number: 10243137
    Abstract: A piezoelectric element includes a first electrode, a piezoelectric layer which is formed on the first electrode by using a solution method, and is formed from compound oxide which has a perovskite structure in which potassium, sodium, and niobium are provided, and a second electrode which is provided on the piezoelectric layer. The piezoelectric layer has a peak derived from a (200) plane and a peak derived from a (002) plane in an X-ray diffraction pattern obtained by ?-2? measurement.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: March 26, 2019
    Assignee: Seiko Epson Corporation
    Inventors: Tomohiro Sakai, Koji Sumi, Tetsuya Isshiki, Toshiaki Takahashi, Tomokazu Kobayashi, Kazuya Kitada
  • Publication number: 20190044139
    Abstract: To provide a transition metal-containing hydroxide, which is a precursor of a lithium-containing composite oxide, with which it is possible to obtain a lithium ion secondary battery excellent in the discharge capacity and cycle characteristics, by using as a cathode active material a lithium-containing composite oxide obtained from the hydroxide. A transition metal-containing hydroxide, which is a precursor of a lithium-containing composite oxide, wherein in a distribution of the logarithmic derivative pore specific surface area relative to the pore size, obtained by BJH method, the proportion of the sum of the logarithmic derivative pore specific surface areas with pore sizes of 10 nm or larger, to 100% of the sum of the logarithmic derivative pore specific surface areas in the entire distribution, is at least 23%.
    Type: Application
    Filed: February 3, 2017
    Publication date: February 7, 2019
    Inventor: Tomohiro SAKAI
  • Publication number: 20190044136
    Abstract: To provide a cathode active material with which it is possible to obtain a lithium ion secondary battery having a high discharge capacity and being excellent in the cycle characteristic even after 50 cycles; a positive electrode using it; and a lithium ion secondary battery. A cathode active material, which comprises a lithium-containing composite oxide represented by the formula: aLi(L1/3Mn2/3)O2.(1-a)LiMO2 wherein M is at least one transition metal element selected from Ni, Co and Mn, and 0<a<1; wherein when the lithium-containing composite oxide is electrochemically oxidized to a potential of 4.5 V vs. Li/Li+, in an X-ray diffraction pattern, the integral breadth of a peak of (003) plane assigned to a crystal structure with space group R-3m is at most 0.38 deg, and the integral breadth of a peak of (104) plane assigned to a crystal structure with space group R-3m is at most 0.54 deg.
    Type: Application
    Filed: February 3, 2017
    Publication date: February 7, 2019
    Inventor: Tomohiro SAKAI
  • Patent number: 10186652
    Abstract: There is provided a piezoelectric element which includes a first electrode, a piezoelectric layer which is formed on the first electrode by using a solution method, and is formed from a compound oxide having a perovskite structure in which potassium, sodium, and niobium are provided, and a second electrode which is provided on the piezoelectric layer. A cross-sectional SEM image of the piezoelectric layer is captured at a magnification of 100,000. When evaluation is performed under a condition in which a measured value in a transverse direction is set to 1,273 nm, two or more voids are included in the piezoelectric layer, a difference between the maximum value and the minimum value among diameters of the voids to be largest in a film thickness direction is equal to or smaller than 14 nm, and the maximum value is equal to or smaller than 24 nm.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: January 22, 2019
    Assignee: Seiko Epson Corporation
    Inventors: Tomohiro Sakai, Koji Sumi, Tetsuya Isshiki, Toshiaki Takahashi, Tomokazu Kobayashi, Kazuya Kitada
  • Publication number: 20190019941
    Abstract: A piezoelectric element includes a first electrode; a piezoelectric layer, placed on or above the first electrode, containing potassium, sodium, niobium, titanium, and oxygen; and a second electrode placed on or above the piezoelectric layer.
    Type: Application
    Filed: July 10, 2018
    Publication date: January 17, 2019
    Inventors: Koji SUMI, Tomokazu KOBAYASHI, Tomohiro SAKAI, Kazuya KITADA, Koichi MOROZUMI, Tsutomu ASAKAWA
  • Patent number: 10181555
    Abstract: A piezoelectric element includes a first electrode, a second electrode, and a thin piezoelectric layer. The thin piezoelectric layer is provided between the first electrode and the first electrode, and is formed of a perovskite type compound oxide which contains potassium, sodium, and niobium. In the piezoelectric layer, in an X-ray diffraction pattern obtained by ??2? measurement, peaks derived from a (002) plane and a (200) plane are provided in a range in which 2? is from 45° to 47°, a peak position of the peak on a high angle side among the peaks satisfies 46.0°?2??46.5°, and a difference of 2? between the peak on the high angle side and the peak on a low angle side is greater than 0.60°.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: January 15, 2019
    Assignee: Seiko Epson Corporation
    Inventors: Kazuya Kitada, Koji Sumi, Tomohiro Sakai, Toshiaki Takahashi
  • Publication number: 20180367792
    Abstract: There is provided an imaging apparatus including a distribution unit configured to distribute a playlist, in which information relating to a plurality of moving image streams can be described, when a distribution request of the playlist is received, and a coding unit configured to encode a moving image frame corresponding to a moving image stream described in the playlist through intraframe coding before receiving a distribution request of a specific moving image stream when the distribution request of the playlist is received, wherein, when the distribution request of the specific moving image stream is received, the distribution unit distributes a moving image stream corresponding to the specific moving image stream including the moving image frame encoded through intraframe coding.
    Type: Application
    Filed: June 15, 2018
    Publication date: December 20, 2018
    Inventor: Tomohiro Sakai
  • Patent number: 10122013
    Abstract: To provide a cathode active material having excellent cycle characteristics and a small decrease in the discharge voltage, and a process for its production. A process for producing a cathode active material, which comprises a step of mixing at least one sulfate (A) selected from the group consisting of a sulfate of Ni, a sulfate of Co and a sulfate of Mn with at least one carbonate (B) selected from the group consisting of sodium carbonate and potassium carbonate in an aqueous solution state to obtain a coprecipitated compound, a step of mixing the coprecipitated compound with an aqueous phosphate solution, a step of volatilizing a water content from the mixture of the coprecipitated compound and the aqueous phosphate solution to obtain a precursor compound, and a step of mixing the precursor compound with lithium carbonate and firing the mixture at from 500 to 1000° C.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: November 6, 2018
    Assignee: SUMITOMO CHEMICAL CO., LTD.
    Inventors: Tomohiro Sakai, Kentaro Tsunozaki, Michinori Suehara
  • Publication number: 20180287048
    Abstract: A piezoelectric element includes a substrate, a first electrode formed on the substrate, a piezoelectric layer, which is a layered structure of a plurality of piezoelectric films each containing potassium, sodium, and niobium, formed on the first electrode, and a second electrode formed on the piezoelectric layer. A sodium concentration in the piezoelectric layer has a Na local maximum value, which is a local maximum value of the sodium concentration, in a first piezoelectric film, which is among the plurality of piezoelectric films, in the vicinity of the first electrode, a sodium concentration gradient decreasing from the Na local maximum value toward the second electrode, and a Na local minimum value, which is a local minimum value of the sodium concentration, near a boundary between the first piezoelectric film and a second piezoelectric film formed immediately above the first piezoelectric film.
    Type: Application
    Filed: March 9, 2018
    Publication date: October 4, 2018
    Inventors: Kazuya KITADA, Koji SUMI, Tomohiro SAKAI, Toshiaki TAKAHASHI, Tsutomu ASAKAWA
  • Publication number: 20180233656
    Abstract: A piezoelectric element includes a first electrode, a second electrode, and a thin piezoelectric layer. The thin piezoelectric layer is provided between the first electrode and the first electrode, and is formed of a perovskite type compound oxide which contains potassium, sodium, and niobium. In the piezoelectric layer, in an X-ray diffraction pattern obtained by ??2? measurement, peaks derived from a (002) plane and a (200) plane are provided in a range in which 2? is from 45° to 47°, a peak position of the peak on a high angle side among the peaks satisfies 46.0°?2??46.5°, and a difference of 2? between the peak on the high angle side and the peak on a low angle side is greater than 0.60°.
    Type: Application
    Filed: February 14, 2018
    Publication date: August 16, 2018
    Inventors: Kazuya KITADA, Koji SUMI, Tomohiro SAKAI, Toshiaki TAKAHASHI
  • Publication number: 20180175277
    Abstract: A piezoelectric element includes a first electrode formed on a substrate, a piezoelectric layer formed on the first electrode and composed of a complex oxide having a perovskite structure containing potassium (K), sodium (Na), niobium (Nb), and manganese (Mn), and a second electrode formed on the piezoelectric layer. The manganese includes divalent manganese (Mn2+), trivalent manganese (Mn3+), and tetravalent manganese (Mn4+), a molar ratio of the divalent manganese to a sum of the trivalent manganese and the tetravalent manganese ((Mn2+/(Mn3++Mn4+)) is 1 or more and 10 or less, and a molar ratio of the potassium to the sodium (K/Na) is 1.1 or less.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 21, 2018
    Inventors: Kazuya KITADA, Koji SUMI, Tetsuya ISSHIKI, Tomohiro SAKAI, Toshiaki TAKAHASHI