Patents by Inventor Tongbi Jiang

Tongbi Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100230794
    Abstract: A method for fabricating semiconductor components includes the steps of: providing a semiconductor substrate having a circuit side, a back side and conductive vias; removing portions of the substrate from the back side to expose terminal portions of the conductive vias; depositing a polymer layer on the back side encapsulating the terminal portions; and then planarizing the polymer layer and ends of the terminal portions to form self aligned conductors embedded in the polymer layer. Additional back side elements, such as terminal contacts and back side redistribution conductors, can also be formed in electrical contact with the conductive vias. A semiconductor component includes the semiconductor substrate, the conductive vias, and the back side conductors embedded in the polymer layer. A stacked semiconductor component includes a plurality of components having aligned conductive vias in electrical communication with one another.
    Type: Application
    Filed: March 12, 2009
    Publication date: September 16, 2010
    Inventors: Jin Li, Tongbi Jiang
  • Patent number: 7781877
    Abstract: A device is disclosed which includes at least one integrated circuit die, at least a portion of which is positioned in a body of encapsulant material, and at least one conductive via extending through the body of encapsulant material.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: August 24, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Tongbi Jiang, Chia Yong Poo
  • Patent number: 7749882
    Abstract: Microelectronic devices and method of forming a plurality of microelectronic devices on a semiconductor workpiece are disclosed herein. One such method includes placing a plurality of first interconnect elements on a side of a semiconductor workpiece, forming a layer on the side of the workpiece, reshaping the first interconnect elements by heating the first interconnect elements, and coupling a first portion of a plurality of individual second interconnect elements to corresponding first interconnect elements with a second portion of the individual second interconnect elements exposed.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: July 6, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Young Do Kweon, Tongbi Jiang
  • Publication number: 20100151630
    Abstract: Some embodiments include methods of assembling integrated circuit packages in which at least two different conductive layers are formed over a bond pad region of a semiconductor die, and in which a conductive projection associated with an interposer is bonded through a gold ball to an outermost of the at least two conductive layers. The conductive layers may comprise one or more of silver, gold, copper, chromium, nickel, palladium, platinum, tantalum, titanium, vanadium and tungsten. In some embodiments, the bond pad region may comprise aluminum, an inner of the conductive layers may comprise nickel, an outer of the conductive layers may comprise gold, the conductive projection associated with the interposer may comprise gold; and the thermosonic bonding may comprise gold-to-gold bonding of the interposer projection to a gold ball, and gold-to-gold bonding of the outer conductive layer to the gold ball. Some embodiments include integrated circuit packages.
    Type: Application
    Filed: March 1, 2010
    Publication date: June 17, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Setho Sing Fee, Lim Thiam Chye, Tongbi Jiang
  • Patent number: 7727785
    Abstract: A method for balancing layer-caused compressive or tensile stress in a semiconductor die, die wafer or similar substrate uses a stress-balancing layer (SBL) attached to an opposite side from a stress-causing layer before the semiconductor die or wafer is significantly warped are provided. The SBL may also serve as, or support, an adhesive layer for die attach and be of a markable material for an enhanced marking method.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: June 1, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Michael E. Connell, Tongbi Jiang
  • Publication number: 20100127409
    Abstract: A microelectronic device wafer includes an adhesive molded in-situ on the wafer. Adhesives and wafers are positioned in molds and a method that includes drawing in the molds at least a partial vacuum and partially curing the adhesive provides an in-situ molded adhesive that is positioned on the wafer. The adhesives can be in liquid, solid, or other forms prior to molding. During molding, the adhesive can be partially cured by heating or irradiating.
    Type: Application
    Filed: November 26, 2008
    Publication date: May 27, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Tongbi Jiang, Shijian Luo
  • Publication number: 20100109149
    Abstract: A device is disclosed which includes a die comprising an integrated circuit and an interposer that is coupled to the die, the interposer having a smaller footprint than that of the die. A method is disclosed which includes operatively coupling an interposer to a die comprising an integrated circuit, the interposer having a smaller footprint than that of the die, and filling a space between the interposer and the die with an underfill material.
    Type: Application
    Filed: January 6, 2010
    Publication date: May 6, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: David J. Corisis, Tongbi Jiang
  • Publication number: 20100096761
    Abstract: The present invention provides techniques to fabricate build-up single or multichip modules. In one embodiment, this is accomplished by dispensing die-attach material in one or more pre-etched cavities on a substrate. A semiconductor die is then placed over each pre-etched cavity including the die-attach material by urging a slight downward pressure on the substrate such that an active surface of each placed semiconductor die is disposed across from the substrate and is further substantially coplanar with the substrate. The semiconductor die is then secured to the substrate by curing the die-attach material. A miniature circuit board, including one or more alternating layer of dielectric material and metallization structures, is then formed over the substrate and the active surface of each semiconductor die to electrically interconnect the semiconductor dies.
    Type: Application
    Filed: December 18, 2009
    Publication date: April 22, 2010
    Inventor: Tongbi Jiang
  • Patent number: 7700406
    Abstract: Some embodiments include methods of assembling integrated circuit packages in which at least two different conductive layers are formed over a bond pad region of a semiconductor die, and in which a conductive projection associated with an interposer is bonded through a gold ball to an outermost of the at least two conductive layers. The conductive layers may comprise one or more of silver, gold, copper, chromium, nickel, palladium, platinum, tantalum, titanium, vanadium and tungsten. In some embodiments, the bond pad region may comprise aluminum, an inner of the conductive layers may comprise nickel, an outer of the conductive layers may comprise gold, the conductive projection associated with the interposer may comprise gold; and the thermosonic bonding may comprise gold-to-gold bonding of the interposer projection to a gold ball, and gold-to-gold bonding of the outer conductive layer to the gold ball. Some embodiments include integrated circuit packages.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: April 20, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Setho Sing Fee, Lim Thiam Chye, Tongbi Jiang
  • Patent number: 7696011
    Abstract: Methods for applying a dielectric protective layer to a wafer in wafer-level chip-scale package manufacture are disclosed. A flowable dielectric protective material with fluxing capability is applied over the active surface of an unbumped semiconductor wafer to cover active device areas, bond pads, test socket contact locations, and optional pre-scribed wafer street trenches. Preformed solder balls are then disposed over the bond pads, and the wafer is subjected to a heating process to reflow the solder balls and at least partially cure the dielectric protective material. During the heating process, the dielectric protective material provides a fluxing capability to enable the solder balls to wet the bond pads. In other exemplary embodiments, the dielectric protective material is applied over only intended physical contact locations and/or pre-scribed wafer street trenches, in which case the dielectric protective material need not include flux material and may additionally include a filler material.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: April 13, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Tongbi Jiang, Shijian Luo
  • Publication number: 20100062571
    Abstract: Microelectronic devices and methods for manufacturing microelectronic devices are disclosed herein. In one embodiment, a device includes a support member and a flexed microelectronic die mounted to the support member. The flexed microelectronic die has a plurality of terminals electrically coupled to the support member and an integrated circuit operably coupled to the terminals. The die can be a processor, memory, imager, or other suitable die. The support member can be a lead frame, a plurality of electrically conductive leads, and/or an interposer substrate.
    Type: Application
    Filed: November 18, 2009
    Publication date: March 11, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Tongbi Jiang, Zhong-Yi Xia, Sandhya Sandireddy
  • Patent number: 7659151
    Abstract: A device is disclosed which includes a die comprising an integrated circuit and an interposer that is coupled to the die, the interposer having a smaller footprint than that of the die. A method is disclosed which includes operatively coupling an interposer to a die comprising an integrated circuit, the interposer having a smaller footprint than that of the die, and filling a space between the interposer and the die with an underfill material.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: February 9, 2010
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Tongbi Jiang
  • Patent number: 7655500
    Abstract: Packaged microelectronic devices and methods for packaging microelectronic devices are disclosed herein. In one embodiment, a method of packaging a microelectronic device including a microelectronic die having a first side with a plurality of bond-pads and a second side opposite the first side includes forming a recess in a substrate, placing the microelectronic die in the recess formed in the substrate with the second side facing toward the substrate, and covering the first side of the microelectronic die with a dielectric layer after placing the microelectronic die in the recess. The substrate can include a thermal conductive substrate, such as a substrate comprised of copper and/or aluminum. The substrate can have a coefficient of thermal expansion at least approximately equal to the coefficient of thermal expansion of the microelectronic die or a printed circuit board.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: February 2, 2010
    Assignee: Micron Technology
    Inventors: Tongbi Jiang, J. Michael Brooks
  • Publication number: 20100013074
    Abstract: A stacked semiconductor die assembly includes at least two partially offset semiconductor dice with bond pads located adjacent at least one peripheral side thereof supported on a redistribution element formed of a material of substantially similar CTE to that of the dice, and a paddle-less lead frame secured to the redistribution element during fabrication, including encapsulation. The assembly is configured to be substantially vertically symmetrical with respect to inner ends of lead fingers of the lead frame to facilitate uniform encapsulant flow. The semiconductor die assembly may be configured in a package with leads extending from two sides thereof, such as a thin small outline package (TSOP), or four sides thereof, such as a quad flat pack (QFP).
    Type: Application
    Filed: September 21, 2009
    Publication date: January 21, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: David J. Corisis, Tongbi Jiang, Shijian Luo
  • Patent number: 7635611
    Abstract: The present invention provides techniques to fabricate build-up single or multichip modules. In one embodiment, this is accomplished by dispensing die-attach material in one or more pre-etched cavities on a substrate. A semiconductor die is then placed over each pre-etched cavity including the die-attach material by urging a slight downward pressure on the substrate such that an active surface of each placed semiconductor die is disposed across from the substrate and is further substantially coplanar with the substrate. The semiconductor die is then secured to the substrate by curing the die-attach material. A miniature circuit board, including one or more alternating layer of dielectric material and metallization structures, is then formed over the substrate and the active surface of each semiconductor die to electrically interconnect the semiconductor dies.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: December 22, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Tongbi Jiang
  • Patent number: 7633157
    Abstract: Microelectronic devices and methods for manufacturing microelectronic devices are disclosed herein. In one embodiment, a device includes a support member and a flexed microelectronic die mounted to the support member. The flexed microelectronic die has a plurality of terminals electrically coupled to the support member and an integrated circuit operably coupled to the terminals. The die can be a processor, memory, imager, or other suitable die. The support member can be a lead frame, a plurality of electrically conductive leads, and/or an interposer substrate.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: December 15, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Tongbi Jiang, Zhong-Yi Xia, Sandhya Sandireddy
  • Patent number: 7615871
    Abstract: A microelectronic package and method for forming such packages. In one embodiment, the package can be formed by providing a support member having a first surface, a second surface facing opposite the first surface, and a projection extending away from the first surface. A quantity of adhesive material can be applied to the projection to form an attachment structure, and the adhesive material can be connected to a microelectronic substrate with the attachment structure providing no electrically conductive link between the microelectronic substrate and the support member. The microelectronic substrate and the support member can then be electrically coupled, for example, with a wire bond. In one embodiment, the projection can be formed by disposing a first material on a support member while the first material is at least partially flowable, reducing the flowability of the first material, and disposing a second material (such as the adhesive) on the first material.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: November 10, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Tongbi Jiang
  • Publication number: 20090256262
    Abstract: Semiconductor devices with porous insulative materials are disclosed. The porous insulative materials may include a consolidated material with voids dispersed therethrough. The voids may be defined by shells of microcapsules. The voids impart the dielectric materials with reduced dielectric constants and, thus, increased electrical insulation properties.
    Type: Application
    Filed: June 22, 2009
    Publication date: October 15, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Warren M. Farnworth, Tongbi Jiang
  • Patent number: 7592691
    Abstract: A stacked semiconductor die assembly includes at least two partially offset semiconductor dice with bond pads located adjacent at least one peripheral side thereof supported on a redistribution element formed of a material of substantially similar CTE to that of the dice, and a paddle-less lead frame secured to the redistribution element during fabrication, including encapsulation. The assembly is configured to be substantially vertically symmetrical with respect to inner ends of lead fingers of the lead frame to facilitate uniform encapsulant flow. The semiconductor die assembly may be configured in a package with leads extending from two sides thereof, such as a thin small outline package (TSOP), or four sides thereof, such as a quad flat pack (QFP).
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: September 22, 2009
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Tongbi Jiang, Shijian Luo
  • Patent number: 7589426
    Abstract: Methods for creating redistribution layers for only selected dice, such as known good dice, to form relatively thin semiconductor component assemblies and packages, and the assemblies and packages created by the methods, are disclosed. A sacrificial layer is deposited on a support substrate. An etch stop layer having a lower etch is deposited on the sacrificial layer. Redistribution lines in a dielectric material are formed on the support substrate on the etch stop layer. Semiconductor dice, either singulated or at the wafer level, are connected to the redistribution lines. The assembly may be scribed to allow the sacrificial layer to be etched to enable removal of the semiconductor dice and associated redistribution layer from the support substrate. The etch stop layer is removed to allow access to the redistribution lines for conductive bumping.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: September 15, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Tongbi Jiang, Li Li, William M. Hiatt