Patents by Inventor Toru Hiyoshi

Toru Hiyoshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210351092
    Abstract: A semiconductor apparatus includes a heatsink plate, a substrate disposed on the heatsink plate, a circuit pattern disposed on the substrate, a semiconductor chip disposed on the circuit pattern, a case fixed to the heatsink plate and surrounding an outer perimeter of the substrate, a terminal attached to the case, and a wire configured to electrically connect the terminal to the circuit pattern or to the semiconductor chip. In a plan view as viewed in the thickness direction of the heatsink plate, a portion of the circuit pattern overlaps the terminal.
    Type: Application
    Filed: October 10, 2019
    Publication date: November 11, 2021
    Inventors: Toru HIYOSHI, Hirotaka OOMORI, Ren KIMURA
  • Publication number: 20210265469
    Abstract: A silicon carbide semiconductor device to be a vertical transistor includes: a silicon carbide semiconductor first layer 21 of a first conductivity type; a silicon carbide semiconductor second layer 22 of a second conductivity type that is different from the first conductivity type on the first layer 21; a silicon carbide semiconductor third layer 120 of the first conductivity type on the second layer 22; and a groove 30 having a sidewall 30a at portions of the third layer 120, the second layer 22, and the first layer 21, wherein the third layer 120 has a first area 121 facing the sidewall 30a of the groove 30 and a second area 122 further away from the sidewall 30a of the groove 30 than the first area 121, wherein the second area 122 and the first area 121 are continuous, and wherein the second area 122 is provided deeper than the first area 121 from a surface side of the third layer 130 toward the first layer 21.
    Type: Application
    Filed: June 13, 2019
    Publication date: August 26, 2021
    Inventors: Taku HORII, Toru HIYOSHI
  • Patent number: 11011631
    Abstract: A silicon carbide substrate has at least one of a first structure and a second structure. The first structure is such that a first impurity region is in contact with a second impurity region, a third impurity region is separated from a fourth impurity region by a second drift region, and the second impurity region has a width greater than a width of the fourth impurity region in a direction parallel to a first main surface. The second structure is such that the first impurity region is separated from the second impurity region by a first drift region, the third impurity region is in contact with the fourth impurity region, and the fourth impurity region has a width greater than a width of the second impurity region in the direction parallel to the first main surface.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: May 18, 2021
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toru Hiyoshi, Kosuke Uchida
  • Publication number: 20200373392
    Abstract: A silicon carbide semiconductor device has a gate insulating film, a first gate electrode, a first electrode, a second electrode, and a gate runner. A silicon carbide substrate has a first main surface and a second main surface. The silicon carbide substrate includes a first impurity region, a second impurity region, and a third impurity region. The first main surface is provided with a gate electrode trench and a gate runner trench. The gate electrode trench is defined by a side surface and a bottom surface continuous to the side surface. The gate insulating film is in contact with both the side surface and the bottom surface. The first gate electrode is provided on the gate insulating film. The second gate electrode is provided in the gate runner trench, and is electrically connected to the first gate electrode. The gate runner is provided on the second gate electrode.
    Type: Application
    Filed: October 2, 2018
    Publication date: November 26, 2020
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Toru HIYOSHI, Takashi TSUNO
  • Publication number: 20200373393
    Abstract: A silicon carbide substrate has a first main surface and a second main surface opposite to the first main surface. A gate pad faces the first main surface. A drain electrode is in contact with the second main surface. The silicon carbide substrate includes a first impurity region constituting the second main surface and having a first conductivity type, a second impurity region provided on the first impurity region and having a second conductivity type different from the first conductivity type, a third impurity region provided on the second impurity region and having the first conductivity type, and a fourth impurity region provided on the third impurity region, constituting the first main surface, and having the second conductivity type. Each of the first impurity region, the second impurity region, the third impurity region, and the fourth impurity region is located between the gate pad and the drain electrode.
    Type: Application
    Filed: October 2, 2018
    Publication date: November 26, 2020
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Kosuke UCHIDA, Toru HIYOSHI
  • Publication number: 20200335622
    Abstract: The sense region is spaced from the active region. The isolation trench surrounds the sense region and isolates the sense region from the active region. The active region is provided with a first gate trench defined by a first side surface and a first bottom surface continuing to the first side surface. The first insulating film is in contact with both the first side surface and the first bottom surface. The first conductor is provided on the first insulating film. The second insulating film is provided in the isolation trench. The second conductor is provided on the second insulating film. The isolation trench reaches a first impurity region. The first insulating film is made of a material identical to that of the second insulating film. The first conductor is made of a material identical to that of the second conductor and is electrically isolated from the second conductor.
    Type: Application
    Filed: October 3, 2018
    Publication date: October 22, 2020
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventor: Toru HIYOSHI
  • Patent number: 10777676
    Abstract: The side surface has a first outer end surface. The bottom surface has a first bottom portion continuous to the first outer end surface, and a second bottom portion continuous to the first bottom portion and located on a side opposite to the inner end surface with respect to the first bottom portion. A silicon carbide substrate has a first region and a second region located between the at least one gate trench and a second main surface, and spaced from each other with a drift region being sandwiched therebetween. In a direction parallel to the first outer end surface, a spacing between the first region and the second region located between the first bottom portion and the second main surface is smaller than a spacing between the first region and the second region located between the second bottom portion and the second main surface.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: September 15, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kosuke Uchida, Toru Hiyoshi
  • Patent number: 10756188
    Abstract: A silicon carbide semiconductor device includes a silicon carbide substrate and a gate insulating film. The silicon carbide substrate includes a first impurity region, a second impurity region, a third impurity region, a fourth impurity region, a fifth impurity region, and a sixth impurity region. A first main surface of the silicon carbide substrate is provided with a trench defined by a side surface and a bottom portion. The sixth impurity region includes a first region which faces the bottom portion and a second region which faces a second main surface of the silicon carbide substrate. The first region is higher in impurity concentration than the second region. In a direction perpendicular to the second main surface, a fifth main surface of the fourth impurity region is located between a sixth main surface of the second impurity region and the second main surface.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: August 25, 2020
    Assignees: Sumitomo Electric Industries, Ltd., National Institute of Advanced Industrial Science and Technology
    Inventors: Toru Hiyoshi, Takeyoshi Masuda, Ryouji Kosugi
  • Patent number: 10756168
    Abstract: A silicon carbide semiconductor device includes: a silicon carbide substrate; a first silicon carbide layer disposed on the silicon carbide substrate; a second silicon carbide layer disposed on the first silicon carbide layer; a third silicon carbide layer disposed on the second silicon carbide layer; a fourth silicon carbide layer disposed on the third silicon carbide layer; and a first impurity region formed to extend through the second silicon carbide layer, the third silicon carbide layer and the fourth silicon carbide layer. A trench is formed in the silicon carbide semiconductor device. The silicon carbide semiconductor device includes: a gate insulating film in contact with a wall of the trench; a gate electrode; a second impurity region disposed below the trench; a third impurity region formed below the first impurity region; and a fourth impurity region formed between the second impurity region and the third impurity region.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: August 25, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Toru Hiyoshi
  • Publication number: 20200185519
    Abstract: A silicon carbide substrate has at least one of a first structure and a second structure. The first structure is such that a first impurity region is in contact with a second impurity region, a third impurity region is separated from a fourth impurity region by a second drift region, and the second impurity region has a width greater than a width of the fourth impurity region in a direction parallel to a first main surface. The second structure is such that the first impurity region is separated from the second impurity region by a first drift region, the third impurity region is in contact with the fourth impurity region, and the fourth impurity region has a width greater than a width of the second impurity region in the direction parallel to the first main surface.
    Type: Application
    Filed: April 26, 2018
    Publication date: June 11, 2020
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Toru HIYOSHI, Kosuke UCHIDA
  • Patent number: 10608107
    Abstract: A silicon carbide substrate includes a first impurity region, a second impurity region in contact with the first impurity region and having p type, a third impurity region on the first impurity region and the second impurity region and having n type, a body region, and a source region. A gate insulating film is in contact with the source region, the body region and the third impurity region at a side surface, and in contact with the third impurity region at a bottom surface. When viewed in a direction perpendicular to a main surface, the second impurity region contains the bottom surface, and an area of the second impurity region is greater than an area of the bottom surface, and is not more than three times the area of the bottom surface. An impurity concentration of the second impurity region exceeds 1×1019 cm?3, and is not more than 1×1021 cm?3.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: March 31, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Mitsuhiko Sakai, Toru Hiyoshi, So Tanaka
  • Patent number: 10504996
    Abstract: A silicon carbide semiconductor device includes a silicon carbide substrate and a gate insulating film. The silicon carbide substrate has a first main surface and a second main surface opposite to the first main surface. The gate insulating film is provided on the first main surface. The silicon carbide substrate includes a first body region having p type, a second body region having p type, and a JFET region provided between the first body region and the second body region and having n type. The JFET region has both a first impurity capable of providing the p type and a second impurity capable of providing the n type. A concentration of the second impurity is higher than a concentration of the first impurity. The silicon carbide semiconductor device capable of suppressing dielectric breakdown of the gate insulating film is provided.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: December 10, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kosuke Uchida, Toru Hiyoshi, Keiji Wada
  • Patent number: 10468358
    Abstract: A method of manufacturing a semiconductor device includes the steps of preparing a semiconductor layer including a wide bandgap semiconductor, the semiconductor layer having an element region and an outer peripheral region surrounding an outer periphery of the element region when viewed two-dimensionally, forming a step portion surrounding the outer periphery of the element region in the outer peripheral region, and forming a metal layer along the step portion. The step portion has a sidewall recessed downward from a main surface of the element region in a cross section parallel to a thickness direction of the semiconductor layer, and the metal layer extends to cover at least a portion of the sidewall. The method of manufacturing a semiconductor device further includes the step of dividing the semiconductor layer into the element regions on an outside of the step portion when viewed from the element region.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: November 5, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toru Hiyoshi, Taku Horii
  • Publication number: 20190288106
    Abstract: The side surface has a first outer end surface. The bottom surface has a first bottom portion continuous to the first outer end surface, and a second bottom portion continuous to the first bottom portion and located on a side opposite to the inner end surface with respect to the first bottom portion. A silicon carbide substrate has a first region and a second region located between the at least one gate trench and a second main surface, and spaced from each other with a drift region being sandwiched therebetween. In a direction parallel to the first outer end surface, a spacing between the first region and the second region located between the first bottom portion and the second main surface is smaller than a spacing between the first region and the second region located between the second bottom portion and the second main surface.
    Type: Application
    Filed: October 3, 2017
    Publication date: September 19, 2019
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Kosuke UCHIDA, Toru HIYOSHI
  • Patent number: 10381445
    Abstract: A silicon carbide semiconductor device includes: a drift layer in contact with a first main surface and having a first conductivity type; a body region located in the drift layer, in contact with the first main surface, and having a second conductivity type; and a protruding portion having the second conductivity type and connected to a bottom of the body region. A manufacturing method includes forming, in the drift layer of a silicon carbide substrate, by ion implantation, the body region, the protruding portion, a JTE region, and at least one guard ring region, each having the second conductivity type.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: August 13, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toru Hiyoshi, Takashi Tsuno
  • Publication number: 20190237536
    Abstract: A silicon carbide semiconductor device includes: a silicon carbide substrate; a first silicon carbide layer disposed on the silicon carbide substrate; a second silicon carbide layer disposed on the first silicon carbide layer; a third silicon carbide layer disposed on the second silicon carbide layer; a fourth silicon carbide layer disposed on the third silicon carbide layer; and a first impurity region formed to extend through the second silicon carbide layer, the third silicon carbide layer and the fourth silicon carbide layer. A trench is formed in the silicon carbide semiconductor device. The silicon carbide semiconductor device includes: a gate insulating film in contact with a wall of the trench; a gate electrode; a second impurity region disposed below the trench; a third impurity region formed below the first impurity region; and a fourth impurity region formed between the second impurity region and the third impurity region.
    Type: Application
    Filed: February 2, 2017
    Publication date: August 1, 2019
    Applicants: Sumitomo Electric Industries, Ltd., Sumitomo Electric Industries, Ltd.
    Inventor: Toru Hiyoshi
  • Publication number: 20190198622
    Abstract: A first main surface is provided with: a gate trench defined by a first side surface and a first bottom surface; and a source trench defined by a second side surface and a second bottom surface. A silicon carbide substrate includes a drift region, a body region, a source region, a first region, and a second region. The first region is in contact with the second region. A gate insulating film is in contact with the drift region, the body region, and the source region at the first side surface, and is in contact with the drift region at the first bottom surface. A source electrode is in contact with the second region at the second side surface and the second bottom surface.
    Type: Application
    Filed: June 20, 2017
    Publication date: June 27, 2019
    Inventors: Kosuke UCHIDA, Toru HIYOSHI, Mitsuhiko SAKAI
  • Publication number: 20190172943
    Abstract: A silicon carbide substrate includes a first impurity region, a second impurity region in contact with the first impurity region and having p type, a third impurity region on the first impurity region and the second impurity region and having n type, a body region, and a source region. A gate insulating film is in contact with the source region, the body region and the third impurity region at a side surface, and in contact with the third impurity region at a bottom surface. When viewed in a direction perpendicular to a main surface, the second impurity region contains the bottom surface, and an area of the second impurity region is greater than an area of the bottom surface, and is not more than three times the area of the bottom surface. An impurity concentration of the second impurity region exceeds 1×1019 cm?3, and is not more than 1×1021 cm?3.
    Type: Application
    Filed: February 27, 2017
    Publication date: June 6, 2019
    Inventors: Mitsuhiko Sakai, Toru Hiyoshi, So Tanaka
  • Publication number: 20190140056
    Abstract: A silicon carbide layer includes a drift region, a body region and a source region. The drift region constitutes a first main surface and has a first conductivity type. The body region is provided on the drift region, and has a second conductivity type. It is provided on the body region to be separated from the drift region, constitutes a second main surface, and has the first conductivity type. The silicon carbide layer is provided with a trench including a first side wall portion and a first bottom portion. The silicon carbide layer is embedded in the drift region to face the first bottom portion, and includes a second conductivity type region having the second conductivity type. The second conductivity type region is electrically connected to the source region.
    Type: Application
    Filed: December 17, 2018
    Publication date: May 9, 2019
    Inventors: Keiji Wada, Takeyoshi Masuda, Hideto Tamaso, Yu Saitoh, Toru Hiyoshi, Mitsuhiko Sakai
  • Publication number: 20190123146
    Abstract: A silicon carbide semiconductor device includes a silicon carbide substrate and a gate insulating film. The silicon carbide substrate has a first main surface and a second main surface opposite to the first main surface. The gate insulating film is provided on the first main surface. The silicon carbide substrate includes a first body region having p type, a second body region having p type, and a JFET region provided between the first body region and the second body region and having n type. The JFET region has both a first impurity capable of providing the p type and a second impurity capable of providing the n type. A concentration of the second impurity is higher than a concentration of the first impurity. The silicon carbide semiconductor device capable of suppressing dielectric breakdown of the gate insulating film is provided.
    Type: Application
    Filed: December 14, 2018
    Publication date: April 25, 2019
    Inventors: Kosuke Uchida, Toru Hiyoshi, Keiji Wada