Patents by Inventor Toshiaki Kirihata

Toshiaki Kirihata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11694757
    Abstract: The present disclosure relates to integrated circuits, and more particularly, to a method for identifying unprogrammed bits for one-time-programmable memory (OTPM) and a corresponding structure. In particular, the present disclosure relates to a structure including: a read circuit configured to perform at least one read operation at an address for a twin-cell one-time-programmable-memory (OTPM); and a comparison circuit configured to identify whether at least one bit of the address for the twin-cell OTPM has been programmed based on the at least one read operation.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: July 4, 2023
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Balaji Jayaraman, Toshiaki Kirihata, Amit K. Mishra
  • Publication number: 20220343988
    Abstract: The present disclosure relates to integrated circuits, and more particularly, to a method for identifying unprogrammed bits for one-time-programmable memory (OTPM) and a corresponding structure. In particular, the present disclosure relates to a structure including: a read circuit configured to perform at least one read operation at an address for a twin-cell one-time-programmable-memory (OTPM); and a comparison circuit configured to identify whether at least one bit of the address for the twin-cell OTPM has been programmed based on the at least one read operation.
    Type: Application
    Filed: July 8, 2022
    Publication date: October 27, 2022
    Inventors: Balaji JAYARAMAN, Toshiaki KIRIHATA, Amit K. MISHRA
  • Patent number: 11417407
    Abstract: The present disclosure relates to integrated circuits, and more particularly, to a method for identifying unprogrammed bits for one-time-programmable memory (OTPM) and a corresponding structure. In particular, the present disclosure relates to a structure including: a read circuit configured to perform at least one read operation at an address for a twin-cell one-time-programmable-memory (OTPM); and a comparison circuit configured to identify whether at least one bit of the address for the twin-cell OTPM has been programmed based on the at least one read operation.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: August 16, 2022
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Balaji Jayaraman, Toshiaki Kirihata, Amit K. Mishra
  • Patent number: 11380373
    Abstract: Disclosed is a memory structure including an array of memory cells and a read circuit. The read circuit includes two registers configured to capture and store two different digital-to-analog converter (DAC) codes, which correspond to two different reference currents that approximate two different output currents generated on a bitline during consecutive single-ended current sensing processes directed to the same selected memory cell but using different input voltages. Optionally, the read circuit can also include a current-voltage (I-V) slope calculator, which uses the two different DAC codes to calculate an I-V slope characteristic of the selected memory cell, and a bit generator, which performs a comparison of the I-V slope characteristic and a reference I-V slope characteristic and based on results of the comparison, generates and outputs a bit with a logic value that represents the data storage state of the selected memory cell. Also disclosed is an associated method.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: July 5, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Mohamed A. Nour, Peter C. Paliwoda, Byoung-Woon B Min, Toshiaki Kirihata
  • Patent number: 11367734
    Abstract: The present disclosure generally relates to semiconductor structures and, more particularly, to charge trap memory devices and methods of manufacture and operation. The semiconductor memory includes: a charge trap transistor comprising a gate structure, a source region and a drain region; and a self-heating circuit which selectively applies an alternating bias direction between the source region and the drain region of the charge trap transistor to provide an erase operation or a programming operation of the charge trap transistor.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: June 21, 2022
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Faraz Khan, Dan Moy, Norman W. Robson, Robert Katz, Darren L. Anand, Toshiaki Kirihata
  • Patent number: 11329836
    Abstract: A Physically Unclonable Function (PUF) structure includes an array of twin cells divided into two portions: one with first columns and one with second columns. Cells in each first column are connected to a corresponding pair of first bitlines. Cells in each second column are connected to a corresponding pair of second bitlines. A first column decoder is connected to the first bitlines and to a first input of sense amplifier (SA) and a second column decoder is connected to the second bitlines and to a second input of SA. Each read operation to generate a bit is directed to a first cell in a first column and a second cell in a second column and, during the read operation, signals on only one first bitline of the first column containing the first cell and only one second bitline of the second column containing the second cell are compared.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: May 10, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Toshiaki Kirihata, Balaji Jayaraman, Chandrahasa Reddy Dinnipati, Ramesh Raghavan
  • Patent number: 11210373
    Abstract: Embodiments of the present invention provide an authenticating service of a chip having an intrinsic identifier (ID). In a typical embodiment, an authenticating device is provided that includes an identification (ID) engine, a self-test engine, and an intrinsic component. The intrinsic component is associated with a chip and includes an intrinsic feature. The self-test engine retrieves the intrinsic feature and communicates it to the identification engine. The identification engine receives the intrinsic feature, generates a first authentication value using the intrinsic feature, and stores the authentication value in memory. The self-test engine generates a second authentication value using an authentication challenge. The identification engine includes a compare circuitry that compares the first authentication value and the second authentication value and generates an authentication output value based on the results of the compare of the two values.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: December 28, 2021
    Assignee: International Business Machines Corporation
    Inventors: Srivatsan Chellappa, Subramanian S. Iyer, Toshiaki Kirihata, Sami Rosenblatt
  • Publication number: 20210242230
    Abstract: The present disclosure generally relates to semiconductor structures and, more particularly, to charge trap memory devices and methods of manufacture and operation. The semiconductor memory includes: a charge trap transistor comprising a gate structure, a source region and a drain region; and a self-heating circuit which selectively applies an alternating bias direction between the source region and the drain region of the charge trap transistor to provide an erase operation or a programming operation of the charge trap transistor.
    Type: Application
    Filed: February 4, 2020
    Publication date: August 5, 2021
    Inventors: Faraz KHAN, Dan MOY, Norman W. ROBSON, Robert KATZ, Darren L. ANAND, Toshiaki KIRIHATA
  • Patent number: 11056208
    Abstract: The present disclosure relates to a data dependent sense amplifier with symmetric margining. In particular, the present disclosure relates to a structure including a bias generator circuit that is configured to provide symmetric margining between two logic states of a memory circuit.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: July 6, 2021
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Balaji Jayaraman, Ramesh Raghavan, Rajesh Reddy Tummuru, Toshiaki Kirihata
  • Patent number: 10685705
    Abstract: The present disclosure generally relates to semiconductor structures and, more particularly, to program and erase memory structures and methods of manufacture. The semiconductor memory includes: a charge trap transistor; and a self-heating circuit which selectively applies voltages to terminals of the charge trap transistor to assist in erase operations of the charge trap transistor.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: June 16, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Faraz Khan, Norman W. Robson, Toshiaki Kirihata, Danny Moy, Darren L. Anand
  • Patent number: 10657231
    Abstract: Embodiments of the present invention provide an authenticating service of a chip having an intrinsic identifier (ID). In a typical embodiment, an authenticating device is provided that includes an identification (ID) engine, a self-test engine, and an intrinsic component. The intrinsic component is associated with a chip and includes an intrinsic feature. The self-test engine retrieves the intrinsic feature and communicates it to the identification engine. The identification engine receives the intrinsic feature, generates a first authentication value using the intrinsic feature, and stores the authentication value in memory. The self-test engine generates a second authentication value using an authentication challenge. The identification engine includes a compare circuitry that compares the first authentication value and the second authentication value and generates an authentication output value based on the results of the compare of the two values.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: May 19, 2020
    Assignee: International Business Machines Corporation
    Inventors: Srivatsan Chellappa, Subramanian S. Iyer, Toshiaki Kirihata, Sami Rosenblatt
  • Patent number: 10613754
    Abstract: A processor-memory system, a stacked-wafer processor-memory system, and a method of fabricating a processor-memory system are disclosed. In an embodiment, the invention provides a processor-memory system comprising a memory area, a multitude of specialized processors, and a management processor. The specialized processors are embedded in the memory area, and each of the specialized processors is configured for performing a specified set of operations using an associated memory domain in the memory area. The management processor is provided to control operations of an associated set of the specialized processors. In one embodiment, each of the specialized processors controls a respective one associated memory domain in the memory area. In an embodiment, the processor-memory system further comprises a specialized processor wafer. The specialized processor wafer includes the memory area, and the multitude of specialized processors are embedded in the specialized processor wafer.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: April 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Daniel G. Berger, Troy L. Graves-Abe, Subramanian S. Iyer, Toshiaki Kirihata, Arvind Kumar, Winfried W. Wilcke
  • Publication number: 20200074051
    Abstract: Embodiments of the present invention provide an authenticating service of a chip having an intrinsic identifier (ID). In a typical embodiment, an authenticating device is provided that includes an identification (ID) engine, a self-test engine, and an intrinsic component. The intrinsic component is associated with a chip and includes an intrinsic feature. The self-test engine retrieves the intrinsic feature and communicates it to the identification engine. The identification engine receives the intrinsic feature, generates a first authentication value using the intrinsic feature, and stores the authentication value in memory. The self-test engine generates a second authentication value using an authentication challenge. The identification engine includes a compare circuitry that compares the first authentication value and the second authentication value and generates an authentication output value based on the results of the compare of the two values.
    Type: Application
    Filed: November 6, 2019
    Publication date: March 5, 2020
    Inventors: Srivatsan Chellappa, Subramanian S. Iyer, Toshiaki Kirihata, Sami Rosenblatt
  • Publication number: 20200042182
    Abstract: A processor-memory system, a stacked-wafer processor-memory system, and a method of fabricating a processor-memory system are disclosed. In an embodiment, the invention provides a processor-memory system comprising a memory area, a multitude of specialized processors, and a management processor. The specialized processors are embedded in the memory area, and each of the specialized processors is configured for performing a specified set of operations using an associated memory domain in the memory area. The management processor is provided to control operations of an associated set of the specialized processors. In one embodiment, each of the specialized processors controls a respective one associated memory domain in the memory area. In an embodiment, the processor-memory system further comprises a specialized processor wafer. The specialized processor wafer includes the memory area, and the multitude of specialized processors are embedded in the specialized processor wafer.
    Type: Application
    Filed: October 9, 2019
    Publication date: February 6, 2020
    Inventors: Daniel G. Berger, Troy L. Graves-Abe, Subramanian S. Iyer, Toshiaki Kirihata, Arvind Kumar, Winfried W. Wilcke
  • Publication number: 20200035295
    Abstract: The present disclosure generally relates to semiconductor structures and, more particularly, to program and erase memory structures and methods of manufacture. The semiconductor memory includes: a charge trap transistor; and a self-heating circuit which selectively applies voltages to terminals of the charge trap transistor to assist in erase operations of the charge trap transistor.
    Type: Application
    Filed: July 27, 2018
    Publication date: January 30, 2020
    Inventors: Faraz KHAN, Norman W. ROBSON, Toshiaki KIRIHATA, Danny MOY, Darren L. ANAND
  • Patent number: 10503402
    Abstract: A processor-memory system, a stacked-wafer processor-memory system, and a method of fabricating a processor-memory system are disclosed. In an embodiment, the invention provides a processor-memory system comprising a memory area, a multitude of specialized processors, and a management processor. The specialized processors are embedded in the memory area, and each of the specialized processors is configured for performing a specified set of operations using an associated memory domain in the memory area. The management processor is provided to control operations of an associated set of the specialized processors. In one embodiment, each of the specialized processors controls a respective one associated memory domain in the memory area. In an embodiment, the processor-memory system further comprises a specialized processor wafer. The specialized processor wafer includes the memory area, and the multitude of specialized processors are embedded in the specialized processor wafer.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: December 10, 2019
    Assignee: International Business Machines Corporation
    Inventors: Daniel G. Berger, Troy L. Graves-Abe, Subramanian S. Iyer, Toshiaki Kirihata, Arvind Kumar, Winfried W. Wilcke
  • Publication number: 20190155999
    Abstract: Embodiments of the present invention provide an authenticating service of a chip having an intrinsic identifier (ID). In a typical embodiment, an authenticating device is provided that includes an identification (ID) engine, a self-test engine, and an intrinsic component. The intrinsic component is associated with a chip and includes an intrinsic feature. The self-test engine retrieves the intrinsic feature and communicates it to the identification engine. The identification engine receives the intrinsic feature, generates a first authentication value using the intrinsic feature, and stores the authentication value in memory. The self-test engine generates a second authentication value using an authentication challenge. The identification engine includes a compare circuitry that compares the first authentication value and the second authentication value and generates an authentication output value based on the results of the compare of the two values.
    Type: Application
    Filed: January 3, 2019
    Publication date: May 23, 2019
    Inventors: Srivatsan Chellappa, Subramanian S. Iyer, Toshiaki Kirihata, Sami Rosenblatt
  • Patent number: 10262119
    Abstract: An authenticating service of a chip having an intrinsic identifier (ID) is provided. The authenticating device includes an identification (ID) engine, a self-test engine, and an intrinsic component. The intrinsic component is associated with a chip and includes an intrinsic feature. The self-test engine retrieves the intrinsic feature and communicates it to the identification engine. The identification engine receives the intrinsic feature, generates a first authentication value using the intrinsic feature, and stores the authentication value in memory. The self-test engine generates a second authentication value using an authentication challenge. The identification engine includes a compare circuitry that compares the first authentication value and the second authentication value and generates an authentication output value based on the results of the compare of the two values.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: April 16, 2019
    Assignee: International Business Machines Corporation
    Inventors: Srivatsan Chellappa, Subramanian S. Iyer, Toshiaki Kirihata, Sami Rosenblatt
  • Publication number: 20180136846
    Abstract: A processor-memory system, a stacked-wafer processor-memory system, and a method of fabricating a processor-memory system are disclosed. In an embodiment, the invention provides a processor-memory system comprising a memory area, a multitude of specialized processors, and a management processor. The specialized processors are embedded in the memory area, and each of the specialized processors is configured for performing a specified set of operations using an associated memory domain in the memory area. The management processor is provided to control operations of an associated set of the specialized processors. In one embodiment, each of the specialized processors controls a respective one associated memory domain in the memory area. In an embodiment, the processor-memory system further comprises a specialized processor wafer. The specialized processor wafer includes the memory area, and the multitude of specialized processors are embedded in the specialized processor wafer.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 17, 2018
    Inventors: Daniel G. Berger, Troy L. Graves-Abe, Subramanian S. Iyer, Toshiaki Kirihata, Arvind Kumar, Winfried W. Wilcke
  • Patent number: 9886193
    Abstract: A processor-memory system, a stacked-wafer processor-memory system, and a method of fabricating a processor-memory system are disclosed. In an embodiment, the invention provides a processor-memory system comprising a memory area, a multitude of specialized processors, and a management processor. The specialized processors are embedded in the memory area, and each of the specialized processors is configured for performing a specified set of operations using an associated memory domain in the memory area. The management processor is provided to control operations of an associated set of the specialized processors. In one embodiment, each of the specialized processors controls a respective one associated memory domain in the memory area. In an embodiment, the processor-memory system further comprises a specialized processor wafer. The specialized processor wafer includes the memory area, and the multitude of specialized processors are embedded in the specialized processor wafer.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: February 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: Daniel G. Berger, Troy L. Graves-Abe, Subramanian S. Iyer, Toshiaki Kirihata, Arvind Kumar, Winfried W. Wilcke