Patents by Inventor Toshiyuki Nagase

Toshiyuki Nagase has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160254902
    Abstract: A BMC processing circuit, a USB power delivery controller, a BMC reception method, and a program capable of achieving stable BMC reception processing with low power consumption are provided. A BMC processing circuit 1100 includes an edge detection unit 1102 that detects change edges of a reception signal encoded by a Biphase Mark Code (BMC) method; an interval measuring unit 1103 that measures an interval value, the interval value being a period between the change edges; a threshold determination unit 1105 that corrects a first threshold using a plurality of interval values to generate a second threshold; and a BMC decoding unit 1107 that decodes the reception signal using the second threshold.
    Type: Application
    Filed: November 23, 2015
    Publication date: September 1, 2016
    Inventor: Toshiyuki NAGASE
  • Patent number: 9426915
    Abstract: In a power module according to the present invention, a copper layer composed of copper or a copper alloy is provided at a surface of a circuit layer onto which a semiconductor element is bonded, and a solder layer formed by using a solder material is formed between the circuit layer and the semiconductor element. An alloy layer containing Sn as a main component, 0.5% by mass or more and 10% by mass or less of Ni, and 30% by mass or more and 40% by mass or less of Cu is formed at the interface between the solder layer and the circuit layer, the thickness of the alloy layer is set to be within a range of 2 ?m or more and 20 ?m or less, and a thermal resistance increase rate is less than 10% after loading a power cycles 100,000 times under a condition where an energization time is 5 seconds and a temperature difference is 80° C. in a power cycle test.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: August 23, 2016
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Touyou Ohashi, Yoshiyuki Nagatomo, Toshiyuki Nagase, Yoshirou Kuromitsu
  • Patent number: 9401340
    Abstract: A semiconductor device comprises a circuit layer composed of a conductive material, and a semiconductor element mounted on the circuit layer, wherein an underlayer having a porosity in the range of 5 to 55% is formed on one surface of the circuit layer, a bonding layer composed of a sintered body of a bonding material including an organic substance and at least one of metal particles and metal oxide particles is formed on the underlayer, and the circuit layer and the semiconductor element are bonded together via the underlayer and the bonding layer.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: July 26, 2016
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Shuji Nishimoto, Yoshiyuki Nagatomo, Toshiyuki Nagase
  • Patent number: 9237682
    Abstract: This power module substrate with a heat sink includes a power module substrate having a circuit layer disposed on one surface of an insulating layer, and a heat sink bonded to the other surface of this power module substrate, wherein the bonding surface of the heat sink and the bonding surface of the power module substrate are each composed of aluminum or an aluminum alloy, a bonding layer (50) having a Mg-containing compound (52) (excluding MgO) which contains Mg dispersed in an Al—Si eutectic composition is formed at the bonding interface between the heat sink and the power module substrate, and the thickness t of this bonding layer (50) is within a range from 5 ?m to 80 ?m.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: January 12, 2016
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Yoshiyuki Nagatomo, Hiroya Ishizuka, Toshiyuki Nagase, Yoshirou Kuromitsu, Masakazu Edo, Hideyuki Miyake
  • Publication number: 20150366048
    Abstract: The power module substrate includes a circuit layer that is formed on a first surface of a ceramic substrate, and a metal layer that is formed on a second surface of the ceramic substrate, in which the metal layer has a first aluminum layer that is bonded to the second surface of the ceramic substrate and a first copper layer that is bonded to the first aluminum layer by solid-phase diffusion bonding.
    Type: Application
    Filed: January 20, 2014
    Publication date: December 17, 2015
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Toshiyuki Nagase, Yoshiyuki Nagatomo, Nobuyuki Terasaki
  • Publication number: 20150328706
    Abstract: To provide a power-module substrate and a manufacturing method thereof in which small voids are reduced at a bonded part and separation can be prevented. Bonding a metal plate of aluminum or aluminum alloy to at least one surface of a ceramic substrate by brazing, when a cross section of the metal plate is observed by a scanning electron microscope in a field of 3000 magnifications in a depth extent of 5 ?m from a bonded interface between the metal plate and the ceramic substrate in a width area of 200 ?m from a side edge of the metal plate, residual-continuous oxide existing continuously by 2 ?m or more along the bonded interface has total length of 70% or less with respect to a length of the field.
    Type: Application
    Filed: March 27, 2013
    Publication date: November 19, 2015
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Toshiyuki Nagase, Takeshi Kitahara, Ryo Muranaka
  • Publication number: 20150319876
    Abstract: In a power module according to the present invention, a copper layer composed of copper or a copper alloy is provided at a surface of a circuit layer onto which a semiconductor element is bonded, and a solder layer formed by using a solder material is formed between the circuit layer and the semiconductor element. An alloy layer containing Sn as a main component, 0.5% by mass or more and 10% by mass or less of Ni, and 30% by mass or more and 40% by mass or less of Cu is formed at the interface between the solder layer and the circuit layer, the thickness of the alloy layer is set to be within a range of 2 ?m or more and 20 ?m or less, and a thermal resistance increase rate is less than 10% after loading a power cycles 100,000 times under a condition where an energization time is 5 seconds and a temperature difference is 80° C. in a power cycle test.
    Type: Application
    Filed: December 20, 2013
    Publication date: November 5, 2015
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Touyou Ohashi, Yoshiyuki Nagatomo, Toshiyuki Nagase, Yoshirou Kuromitsu
  • Publication number: 20150319877
    Abstract: A power module is provided with a copper layer composed of copper or a copper alloy on a surface of a circuit layer to which a semiconductor device is bonded, and a solder layer that is formed by using a solder material is formed between the circuit layer and the semiconductor device. An average crystal grain size which is measured by EBSD measurement in a region having a thickness of up to 30 ?m from the surface of the circuit layer in the solder layer is 10 ?m or less, the solder layer has a composition that contains Sn as a main component, 0.01 to 1.0% by mass of Ni, and 0.1 to 5.0% by mass of Cu, and a thermal resistance increase rate when a power cycle is loaded 100,000 times is less than 10% in a power cycle test.
    Type: Application
    Filed: December 20, 2013
    Publication date: November 5, 2015
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Touyou Ohashi, Yoshiyuki Nagatomo, Toshiyuki Nagase, Yoshirou Kuromitsu
  • Publication number: 20150255419
    Abstract: A semiconductor device comprises a circuit layer composed of a conductive material, and a semiconductor element mounted on the circuit layer, wherein an underlayer having a porosity in the range of 5 to 55% is formed on one surface of the circuit layer, a bonding layer composed of a sintered body of a bonding material including an organic substance and at least one of metal particles and metal oxide particles is formed on the underlayer, and the circuit layer and the semiconductor element are bonded together via the underlayer and the bonding layer.
    Type: Application
    Filed: October 7, 2013
    Publication date: September 10, 2015
    Inventors: Shuji Nishimoto, Yoshiyuki Nagatomo, Toshiyuki Nagase
  • Publication number: 20150055303
    Abstract: This power module substrate with a heat sink includes a power module substrate having a circuit layer disposed on one surface of an insulating layer, and a heat sink bonded to the other surface of this power module substrate, wherein the bonding surface of the heat sink and the bonding surface of the power module substrate are each composed of aluminum or an aluminum alloy, a bonding layer (50) having a Mg-containing compound (52) (excluding MgO) which contains Mg dispersed in an Al—Si eutectic composition is formed at the bonding interface between the heat sink and the power module substrate, and the thickness t of this bonding layer (50) is within a range from 5 ?m to 80 ?m.
    Type: Application
    Filed: March 29, 2013
    Publication date: February 26, 2015
    Inventors: Yoshiyuki Nagatomo, Hiroya Ishizuka, Toshiyuki Nagase, Yoshirou Kuromitsu, Masakazu Edo, Hideyuki Miyake
  • Publication number: 20140318831
    Abstract: In a power module substrate, a circuit layer is formed on one surface of an insulating layer, a metal layer is formed on the other surface of the insulating layer, and a body to be bonded can be bonded to the other surface of the metal layer using a flux. A flux component intrusion-preventing layer containing an oxide and a resin is formed at a circumferential edge section of a bonding interface between the insulating layer and the metal layer.
    Type: Application
    Filed: December 11, 2012
    Publication date: October 30, 2014
    Inventors: Kimihito Nishikawa, Shuuji Nishimoto, Takeshi Kitahara, Toshiyuki Nagase
  • Publication number: 20120298408
    Abstract: A substrate for a power module comprises a substrate main body having a plate-shape, a first surface, which is one surface of the substrate main body and a mounting surface that a semiconductor device is mounted on, and a second surface, which is the other surface of the substrate main body and an insulation layer is formed on, wherein the substrate main body is made of a metal matrix composite plate composed of a metal matrix composite in which metal is filled into a carbonaceous material.
    Type: Application
    Filed: February 4, 2011
    Publication date: November 29, 2012
    Applicant: Mitsubishi Materials Corporation
    Inventors: Yoshiyuki Nagatomo, Toshiyuki Nagase, Shinsuke Aoki
  • Patent number: 8188376
    Abstract: A process for providing a power module substrate. A brazing sheet is temporarily fixed on a surface of a ceramic substrate by surface tension of a volatile organic medium, and a conductive pattern member punched from a base material is temporarily fixed on a surface of the brazing sheet by surface tension. These are heated so as to volatilize the volatile organic medium, and a pressure is applied to the conductive pattern member in its thickness direction. The brazing sheet is then melted to join the conductive pattern member with the surface of the ceramics substrate.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: May 29, 2012
    Assignee: Mitsubishi Materials Corporation
    Inventors: Takeshi Negishi, Toshiyuki Nagase
  • Patent number: 8164909
    Abstract: A base plate for a power module includes: a metal plate, a ceramic base plate joined to the metal plate, and a release agent provided in a joint surface between the metal plate and the ceramic base plate. A remaining amount of the release agent is less than 5 as an amount of boron measured by fluorescence X-ray analysis, and a crystal grain straining region in the joint surface is equal to or less than 40%, or an amount of crystal grain straining in the joint surface is equal to or less than 0.03%.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: April 24, 2012
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshiyuki Nagase, Yoshiyuki Nagatomo, Kazuaki Kubo, Takeshi Negishi
  • Patent number: 8116084
    Abstract: A method for manufacturing a power module substrate, includes: preparing a ceramics substrate and a metal plate made of pure aluminum; a fusion step in which the ceramics substrate and the metal plate are stacked in layers with a brazing filler metal interposed therebetween, and a fused aluminum layer is formed at an interface between the ceramics substrate and the metal plate by fusing the brazing filler metal which is caused by heating; and a solidifying step in which the fused aluminum layer is solidified by cooling, and a crystal is grown so as to be arranged in a crystal orientation of the metal plate when the fused aluminum layer is solidified.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: February 14, 2012
    Assignee: Mitsubishi Materials Corporation
    Inventors: Takeshi Kitahara, Yoshiyuki Nagatomo, Toshiyuki Nagase, Yoshirou Kuromitsu
  • Patent number: 8001682
    Abstract: A high-efficiency production method for a power module substrate with reduced line width of a conductive pattern provides an insulation substrate suitable for realizing a large current and a high voltage of a power module. According to the method, a brazing sheet is temporarily fixed on a first surface of a ceramics substrate by surface tension of a volatile organic liquid. The brazing sheet is also temporarily fixed on the first surface of a conductive pattern member punched from a base material by surface tension of same type of volatile organic liquid. The brazing sheet and the conductive pattern member are heated so as to volatilize the volatile organic liquid and a pressure is applied to the conductive pattern member in its thickness direction. The brazing sheet is melted to join the conductive pattern member with the first surface of the ceramics substrate.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: August 23, 2011
    Assignee: Mitsubishi Materials Corporation
    Inventors: Takeshi Negishi, Toshiyuki Nagase
  • Publication number: 20100285331
    Abstract: A method for manufacturing a power module substrate, includes: preparing a ceramics substrate and a metal plate made of pure aluminum; a fusion step in which the ceramics substrate and the metal plate are stacked in layers with a brazing filler metal interposed therebetween, and a fused aluminum layer is formed at an interface between the ceramics substrate and the metal plate by fusing the brazing filler metal which is caused by heating; and a solidifying step in which the fused aluminum layer is solidified by cooling, and a crystal is grown so as to be arranged in a crystal orientation of the metal plate when the fused aluminum layer is solidified.
    Type: Application
    Filed: November 19, 2008
    Publication date: November 11, 2010
    Applicant: Mitsubishi Materials Corporation
    Inventors: Takeshi Kitahara, Yoshiyuki Nagatomo, Toshiyuki Nagase, Yoshirou Kuromitsu
  • Publication number: 20100230473
    Abstract: A base plate for a power module includes: a metal plate, a ceramic base plate joined to the metal plate, and a release agent provided in a joint surface between the metal plate and the ceramic base plate. A remaining amount of the release agent is less than 5 as an amount of boron measured by fluorescence X-ray analysis, and a crystal grain straining region in the joint surface is equal to or less than 40%, or an amount of crystal grain straining in the joint surface is equal to or less than 0.03%.
    Type: Application
    Filed: May 20, 2010
    Publication date: September 16, 2010
    Applicant: Mitsubishi Materials Corporation
    Inventors: Toshiyuki Nagase, Yoshiyuki Nagatomo, Kazuaki Kubo, Takeshi Negishi
  • Publication number: 20100053903
    Abstract: A process for providing a power module substrate. A brazing sheet is temporarily fixed on a surface of a ceramic substrate by surface tension of a volatile organic medium, and a conductive pattern member punched from a base material is temporarily fixed on a surface of the brazing sheet by surface tension. These are heated so as to volatilize the volatile organic medium, and a pressure is applied to the conductive pattern member in its thickness direction. The brazing sheet is then melted to join the conductive pattern member with the surface of the ceramics substrate.
    Type: Application
    Filed: November 10, 2009
    Publication date: March 4, 2010
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Takeshi Negishi, Toshiyuki Nagase
  • Patent number: 7565467
    Abstract: A USB hub according to an embodiment of the invention includes: a USB upstream port unit for inputting/outputting data in accordance with a USB protocol; a wireless upstream port unit for inputting/outputting data in accordance with a predetermined wireless communication protocol; a USB downstream port unit including at least one input/output port for inputting/outputting data in accordance with the USB protocol; a port selector for selection between the USB upstream port unit and the wireless upstream port unit to be connected with the input/output port; and a communication protocol converting unit provided on a connection path between the wireless upstream port unit and the port selector and converting the USB protocol and the wireless communication protocol.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: July 21, 2009
    Assignee: NEC Electronics Corporation
    Inventor: Toshiyuki Nagase