Patents by Inventor Toshiyuki Nagase

Toshiyuki Nagase has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7532481
    Abstract: A base plate for a power module includes: a metal plate, a ceramic base plate joined to the metal plate, and a release agent which includes boron provided in a joint surface between the metal plate and the ceramic base plate. A remaining amount of the release agent is less than 5, as an amount of boron measured by fluorescence X-ray analysis, where the amount of boron is defined as a value obtained by an expression: (a peak height of B-K?/a peak height of X-K?) x 100000 and a crystal grain straining region in the joint surface is equal to or less than 40%, or an amount of crystal grain straining in the joint surface is equal to or less than 0.03%.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: May 12, 2009
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshiyuki Nagase, Yoshiyuki Nagatomo, Kazuaki Kubo, Takeshi Negishi
  • Publication number: 20080248326
    Abstract: A base plate for a power module includes: a metal plate, a ceramic base plate joined to the metal plate, and a release agent provided in a joint surface between the metal plate and the ceramic base plate. A remaining amount of the release agent is less than 5 as an amount of boron measured by fluorescence X-ray analysis, and a crystal grain straining region in the joint surface is equal to or less than 40%, or an amount of crystal grain straining in the joint surface is equal to or less than 0.03%.
    Type: Application
    Filed: June 12, 2008
    Publication date: October 9, 2008
    Applicant: Mitsubishi Materials Corporation
    Inventors: Toshiyuki Nagase, Yoshiyuki Nagatomo, Kazuaki Kubo, Takeshi Negishi
  • Publication number: 20070297162
    Abstract: High-efficiency production of a power module substrate and reduction of the line width of a conductive pattern, and to provide an insulation substrate suitable for realizing a large current and a high voltage of a power module. A brazing sheet is temporarily fixed on a surface of a ceramics substrate by surface tension of a volatile organic medium, and a conductive pattern member punched from a base material is temporarily fixed on a surface of the brazing sheet by surface tension. These are heated so as to volatilize the volatile organic medium and a pressure is applied to the conductive pattern member in its thickness direction. The brazing sheet is melted to join the conductive pattern member with the surface of the ceramics substrate.
    Type: Application
    Filed: August 16, 2005
    Publication date: December 27, 2007
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Takeshi Negishi, Toshiyuki Nagase
  • Publication number: 20070274047
    Abstract: A base plate for a power module includes: a metal plate, a ceramic base plate joined to the metal plate, and a release agent provided in a joint surface between the metal plate and the ceramic base plate. A remaining amount of the release agent is less than 5 as an amount of boron measured by fluorescence X-ray analysis, and a crystal grain straining region in the joint surface is equal to or less than 40%, or an amount of crystal grain straining in the joint surface is equal to or less than 0.03%.
    Type: Application
    Filed: April 4, 2005
    Publication date: November 29, 2007
    Applicant: Mitsubishi Materials Corporation
    Inventors: Toshiyuki Nagase, Yoshiyuki Nagatomo, Kazuaki Kubo, Takeshi Negishi
  • Patent number: 7128979
    Abstract: A circuit board including conductive layers bonded to both surfaces of an insulating ceramic substrate, with a brazing material disposed therebetween. The conductive layers comprise at least 99.98% by mass of aluminum, and display an average crystal grain diameter within a range from 0.5 mm to 5 mm and a standard deviation ? for that crystal grain diameter of no more than 2 mm. Each conductive layer comprises at least 20 ppm of Cu, Fe and Si. The surface area of the crystal with the maximum crystal grain diameter within the conductive layers accounts for no more than 15% of the surface area of the insulating ceramic substrate.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: October 31, 2006
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshiyuki Nagase, Yoshiyuki Nagatomo
  • Publication number: 20060179144
    Abstract: A USB hub according to an embodiment of the invention includes: a USB upstream port unit for inputting/outputting data in accordance with a USB protocol; a wireless upstream port unit for inputting/outputting data in accordance with a predetermined wireless communication protocol; a USB downstream port unit including at least one input/output port for inputting/outputting data in accordance with the USB protocol; a port selector for selection between the USB upstream port unit and the wireless upstream port unit to be connected with the input/output port; and a communication protocol converting unit provided on a connection path between the wireless upstream port unit and the port selector and converting the USB protocol and the wireless communication protocol.
    Type: Application
    Filed: January 19, 2006
    Publication date: August 10, 2006
    Inventor: Toshiyuki Nagase
  • Patent number: 7019975
    Abstract: The present invention relates to a power module in which an insulated circuit board is fixed to one main surface of a heat discharge plate. It is an object thereof to provide a power module in which the heat discharge characteristics are improved without any marked warping being generated, and that has an extended heat cycle longevity. In the power module 10 of the present invention, a square insulated circuit board 12 is fixed to one main surface of a heat discharge plate 11. The heat discharge plate 11 is formed of an Al based alloy plate having a thickness A of 3 to 10 mm, and the insulated circuit board 12 having a side B of 30 mm or less in length is brazed directly onto the heat discharge plate 11. It is-preferable that the brazing material used is one or two or more brazing materials selected from Al—Si, Al—Ge, Al—Cu, Al—Mg, and Al—Mn based brazing materials.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: March 28, 2006
    Assignee: Mitsubishi Materials Corporation
    Inventors: Yoshiyuki Nagatomo, Toshiyuki Nagase, Shoichi Shimamura
  • Publication number: 20050214518
    Abstract: A circuit board including conductive layers bonded to both surfaces of an insulating ceramic substrate, with a brazing material disposed therebetween. The conductive layers comprise at least 99.98% by mass of aluminum, and display an average crystal grain diameter within a range from 0.5 mm to 5 mm and a standard deviation ? for that crystal grain diameter of no more than 2 mm. Each conductive layer comprises at least 20 ppm of Cu, Fe and Si. The surface area of the crystal with the maximum crystal grain diameter within the conductive layers accounts for no more than 15% of the surface area of the insulating ceramic substrate.
    Type: Application
    Filed: April 21, 2003
    Publication date: September 29, 2005
    Applicant: Mitsubishi Materials Corporation
    Inventors: Toshiyuki Nagase, Yoshiyuki Nagatomo
  • Publication number: 20040188828
    Abstract: This power module substrate (1) is provided for satisfying both long life with respect to heat cycle and satisfactory thermal conductivity. The power module substrate is provided with an insulating substrate (2) a circuitry layer (3) laminated on one side of insulating substrate, a metal layer (4) laminated on the other side of insulating substrate, a semiconductor chip (5) loaded onto circuitry layer by means of solder (7), and a radiator (6) joined to metal layer. Circuit layer and metal layer are composed of copper of at least 99.999% purity. Temperature cycling life can be extended since there is no accumulation of internal stress even when subjected to repeated heat cycle. In addition, since circuitry layer and metal layer are composed of copper having satisfactory thermal conductivity, heat from semiconductor chip can be efficiently released by transferring to the side of radiator.
    Type: Application
    Filed: December 23, 2003
    Publication date: September 30, 2004
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Yoshiyuki Nagatomo, Takeshi Negishi, Toshiyuki Nagase
  • Publication number: 20040022029
    Abstract: The present invention relates to a power module in which an insulated circuit board is fixed to one main surface of a heat discharge plate. It is an object thereof to provide a power module in which the heat discharge characteristics are improved without any marked warping being generated, and that has an extended heat cycle longevity.
    Type: Application
    Filed: June 27, 2003
    Publication date: February 5, 2004
    Inventors: Yoshiyuki Nagatomo, Toshiyuki Nagase, Shoichi Shimamura
  • Patent number: 6563709
    Abstract: A heat sink is obtained that has high thermal conductivity as well as satisfactory moldability and corrosion resistance by using a malleable material made of aluminum or aluminum alloy. Liquid cooled heat sink 11 has a passage 23 in which coolant is able to pass, and is joined to a ceramic substrate. A plurality of through holes 12 extending from one end to the other end are formed by a plurality of dividing walls 13 through 15 in flat casing 12 of which both ends are open, and notches 16 are formed on one or both ends of the plurality of dividing walls. Corrugated fins 17 are respectively inserted into each of the plurality of through holes, and each through hole is demarcated into a plurality of slots 12b extending from one end to the other end of the casing by these fins. Both ends of the casing are closed by a pair of covers 18 and 19, and coolant inlet 18a and outlet 18b are formed in the covers.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: May 13, 2003
    Assignee: Mitsubishi Materials Corporation
    Inventors: Takeshi Negishi, Toshiyuki Nagase, Yoshiyuki Nagatomo, Shoichi Shimamura, Asao Tokiwa
  • Patent number: 6483185
    Abstract: A power module substrate includes a ceramic substrate having a circuit pattern formed thereon, and a metal frame with which the ceramic substrate can be joined to a water-cooling type heat sink. The metal frame has a thickness equal to that of the ceramic substrate or the ceramic substrate having the circuit pattern, and is provided with plural perforations formed therein. Metal thin sheets having through-holes in communication with the corresponding perforations, and containing contacting portions having the undersides thereof contacted to at least a part of the circumferential surface of the ceramic substrate are disposed on the surface of the metal frame. In a semiconductor device, a semiconductor element is mounted onto the circuit pattern, and the power module substrate is joined directly to the water-cooling type heat sink by inserting male screws through the through-holes and the perforations, and screwing the male screws in the female screws of the water-cooling type heat sink.
    Type: Grant
    Filed: September 22, 1999
    Date of Patent: November 19, 2002
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshiyuki Nagase, Yoshiyuki Nagatomo, Kazuaki Kubo, Shoichi Shimamura, Koichi Goshi
  • Publication number: 20020101718
    Abstract: A heat sink is obtained that has high thermal conductivity as well as satisfactory moldability and corrosion resistance by using a malleable material made of aluminum or aluminum alloy. Liquid cooled heat sink 11 has a passage 23 in which coolant is able to pass, and is joined to a ceramic substrate. A plurality of through holes 12 extending from one end to the other end are formed by a plurality of dividing walls 13 through 15 in flat casing 12 of which both ends are open, and notches 16 are formed on one or both ends of the plurality of dividing walls. Corrugated fins 17 are respectively inserted into each of the plurality of through holes, and each through hole is demarcated into a plurality of slots 12b extending from one end to the other end of the casing by these fins. Both ends of the casing are closed by a pair of covers 18 and 19, and coolant inlet 18a and outlet 18b are formed in the covers.
    Type: Application
    Filed: July 19, 2001
    Publication date: August 1, 2002
    Inventors: Takeshi Negishi, Toshiyuki Nagase, Yoshiyuki Nagatomo, Shoichi Shimamura, Asao Tokiwa
  • Patent number: 6310775
    Abstract: The present invention for solving the problem of suppressing the load caused by heat stress applied on an insulation substrate, reducing the manufacturing coat of a power module substrate, and improving productivity provides a power module substrate in which a buffer layer having a surface area one to three times as large as the surface area of the insulation substrate is laminated and bonded between the insulation substrate and the heat sink, wherein the buffer layer is formed using a material having a thermal expansion coefficient between the thermal expansion coefficients of the insulation substrate and the heat sink, the insulation substrate being preferably formed using AlN, Si3N4 or Al2O3, the buffer layer being preferably formed using AlSiC, and a carbon plate or a composite material of AlC, besides the thickness of the buffer layer being preferably 1.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: October 30, 2001
    Assignee: Mitsubishi Materials Corporation
    Inventors: Yoshiyuki Nagatomo, Toshiyuki Nagase, Kazuaki Kubo, Shoichi Shimamura
  • Patent number: 6033787
    Abstract: A ceramic circuit board with a heat sink which has a long life under heat cycles. First and second aluminum plates are laminated and bonded onto both sides of a ceramic substrate through Al--Si-based brazing solders, respectively. A heat sink formed of an AlSiC-based composite material is laminated and bonded onto a surface of the first aluminum plate. The ceramic substrate is formed of AlN, Si.sub.3 N.sub.4 or Al.sub.2 O.sub.3. An Al alloy in the heat sink has an Al purity of 80-99% by weight, and the first or second aluminum plate has an Al purity not less than 99.98% by weight. The heat sink is laminated and bonded onto the first aluminum plate through the Al alloy in the heat sink.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: March 7, 2000
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshiyuki Nagase, Yoshirou Kuromitsu, Kunio Sugamura, Yoshio Kanda, Masafumi Hatsushika, Masato Otsuki
  • Patent number: 5675474
    Abstract: Highly heat-radiating ceramic packages comprising a multi-layer ceramic wiring board 11 to one surface of which is bonded a heat-radiating ceramic base plate 13 with first and second aluminum plates 31 and 32 bonded to both surfaces thereof, via the first aluminum plate 31 are free from warping and cracking, and have improved heat-radiation performance and lower weight and manufacturing cost. The ceramic base plate 13 and the multi-layer ceramic wiring board 11 may be constructed with the same or different types of ceramic which are selected from the group consisting of alumina, glass ceramic, aluminum nitride, mullite, and silicon carbide. The two aluminum plates 31 and 32 are bonded to the ceramic base plate 13 with an Al-Si brazing material. Improved levels of heat radiation performance are accomplished by bonding a heat-radiating ceramic base plate with an aluminum plate bonded thereto, to a multi-layer wiring board prepared even by low-temperature sintering.
    Type: Grant
    Filed: July 17, 1995
    Date of Patent: October 7, 1997
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshiyuki Nagase, Yoshio Kanda, Yoshiro Kuromitu, Masafumi Hatsushika, Hirokazu Tanaka
  • Patent number: 5096768
    Abstract: An insulating substrate is used for fabrication of a thick film circuit and comprises a foundation of aluminum nitride and a surface film structure provided on the foundation, in which the foundation contains at least one oxidizing agent selected from the group consisting of an yttrium oxide and a calcium oxide ranging from 0.1% to 10% by weight for enhancing a stiffness of the foundation, and in which the surface film structure is of the multi-level surface film structure having a lower surface film of an aluminum oxide rapidly grown on the foundation in the presence of the oxidizing agent and an upper surface film containing a silicon oxide and a substance selected from the group consisting of a zirconium oxide, a titanium oxide and a boron oxide for enhancing the resistivity against a firing operation.
    Type: Grant
    Filed: February 5, 1990
    Date of Patent: March 17, 1992
    Assignee: Mitsubishi Metal Corporation
    Inventors: Yoshirou Kuromitsu, Hideaki Yoshida, Toshiyuki Nagase, Hiroto Uchida, Tadaharu Tanaka, Yoshio Kanda, Kenji Morinaga
  • Patent number: 5087509
    Abstract: An insulating substrate is used for fabrication of a thick film circuit provided with a conductive pattern made from a paste containing glass frits, and comprises a foundation containing an aluminum nitride and incidental impurities, and a multi-level surface film structure provided between the foundation and the conductive pattern and having a lower surface film of an aluminum oxide provided on a surface of the foundation, an intermediate surface film provided on the lower surface film and formed of a substance having a relatively small acidity and an upper surface film provided on the intermediate surface film and formed of a substance having a relatively large acidity, in which the substance with the large acidity rapidly reacts with the frits in a firing stage for enhancing the adhesion of the conductive pattern but the substance with the relatively small acidity restricts the consumption thereof, so that the total thickness of the multi-level film structure is decrased and, accordingly, the heat radiatio
    Type: Grant
    Filed: May 18, 1990
    Date of Patent: February 11, 1992
    Assignee: Mitsubishi Metal Corporation
    Inventors: Yoshirou Kuromitsu, Hideaki Yoshida, Toshiyuki Nagase, Tadaharu Tanaka, Yoshio Kanda