Patents by Inventor Tri-Rung Yew

Tri-Rung Yew has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5998251
    Abstract: An integrated circuit device having both an array of logic circuits and an array of embedded DRAM circuits is provided using a process that avoids some of the most significant processing challenges for embedded DRAM integration. Transfer FETs and wiring lines are provided for the embedded DRAM circuits and FETs are provided for the logic portions of the device in an initial phase of the process. The gate electrodes and source/drain regions of the logic FETs are subjected to a salicide process at this initial phase and a thick planarized oxide layer is provided over both the embedded DRAM regions and the logic circuit regions. Capacitors and logic interconnects are next formed using common etching, titanium nitride deposition and tungsten deposition steps. Contact vias are formed to expose each of the source drain regions of the DRAM transfer FETs and to expose select conductors within the logic circuits.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: December 7, 1999
    Assignee: United Microelectronics Corp.
    Inventors: H. J. Wu, Shih-Wei Sun, Jacob Chen, Tri-Rung Yew
  • Patent number: 5994181
    Abstract: A polysilicon layer is subsequently deposited on the dielectric layer by using CVD. Next, photolithography and etching process are used to etch the doped polysilicon layer, and form a bottom electrode of DRAM cell capacitor with U shape in cross section view. The next step of the formation is the deposition of a dielectric film along the surface of the bottom electrode of DRAM cell capacitor. Typically, the dielectric film is preferably formed of high dielectric film such as tantalum oxide (Ta.sub.2 0.sub.5). A conductive layer is deposited over the dielectric film. The conductive layer is used as the top storage node and is formed of titanium nitride(TiN). The methods of forming the top storage node, including sputtered-TiN, collimated-sputtering TiN, and CVD/MOCVD-TiN deposition. The purposes of sputtered-TiN and collimated-sputtering TiN processes can improve the poor step coverage of deep well of bottom electrode of DRAM cell capacitor and protect the Ta.sub.2 0.sub.
    Type: Grant
    Filed: May 19, 1997
    Date of Patent: November 30, 1999
    Assignee: United Microelectronics Corp.
    Inventors: Wen-Yi Hsieh, Tri-Rung Yew
  • Patent number: 5994183
    Abstract: A method for forming a high capacitance charge storage structure that can be applied to a substrate wafer having MOS transistor already formed thereon. The method is to form an insulating layer above the substrate wafer. Next, a contact window exposing a source/drain region is formed in the insulating layer. Then, a tungsten suicide layer, which functions as a lower electrode for the charge storage structure, is formed over the substrate. Thereafter, a tungsten nitride layer is formed over the tungsten silicide layer, and then a dielectric layer is formed over the tungsten nitride layer. The dielectric layer is preferably a tantalum oxide layer. Finally, a titanium nitride layer, which functions as an upper electrode for the charge storage structure, is formed over the tantalum oxide layer.
    Type: Grant
    Filed: December 23, 1997
    Date of Patent: November 30, 1999
    Assignee: United Microelectronics Corp.
    Inventors: Kuo-Tai Huang, Wen-Yi Hsieh, Tri-Rung Yew
  • Patent number: 5990015
    Abstract: A dual damascene process can be used to form an interconnect. A first dielectric layer is formed on a semiconductor substrate having a device layer formed thereon. A stop layer is formed on the first dielectric layer and a second dielectric layer is formed on the stop layer. A hard mask layer is formed and patterned on the second dielectric layer so that an opening is formed to expose the second dielectric layer therewithin. The second dielectric layer, the stop layer and a part of the first dielectric layer are etched within the opening by photolithography and etching, so that a contact window is formed. Using the hard mask layer as a hard mask, an etching is performed so that a metal trench penetrating through the second dielectric layer is formed, and the device layer within the contact window is exposed.
    Type: Grant
    Filed: March 12, 1998
    Date of Patent: November 23, 1999
    Assignee: United Microelectronics Corp.
    Inventors: Tony Lin, Yimin Huang, Tri-Rung Yew
  • Patent number: 5981395
    Abstract: A method of fabricating an unlanded metal via of multi-level interconnection. The method is characterized by utilizing damascene scheme to form a metal wiring layer so that the processes are simplified. Moreover, by this method of the invention, a problem of difficulty in filling dielectric material between the metal wiring lines can be avoided and the metal layer does not have to be etched prior to filling the dielectric material. Further more, an etching stop layer is formed over the first inter-metal dielectric layer to avoid overetching during the formation of metal via, which therefore avoid short circuit. Forming the metal wiring lines by damascene scheme allows the etching stop layer to be easily formed over the first dielectric layer, without over etching the metal via.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: November 9, 1999
    Assignee: United Microelectronics Corp.
    Inventors: Yimin Huang, Tri-Rung Yew
  • Patent number: 5976931
    Abstract: The capacitor of a DRAM cell is formed by depositing a layer of doped polysilicon, patterning the layer of doped polysilicon to define the extent of the capacitor's lower electrode and then depositing a first layer of hemispherical-grained silicon (HSG-Si) on the layer of doped polysilicon. Growth of the first layer of HSG-Si is interrupted and then a second layer of HSG-Si is grown. In one aspect, growth of the first layer of HSG-Si may be interrupted by either cooling the deposition substrate or stopping deposition for a period of time and then reinitiating deposition to provide a second layer of HSG-Si on the surface of the electrode. The interruption of the growth of the first layer, whether by cooling or by delay, is sufficient if the reinitiated growth initiates in a manner that is independent of the first process; i.e., the second layer of HSG-Si grows independently.
    Type: Grant
    Filed: December 31, 1996
    Date of Patent: November 2, 1999
    Assignee: United Microelectronics Corp.
    Inventors: Tri-Rung Yew, Water Lur, Shih-Wei Sun
  • Patent number: 5976984
    Abstract: A method of making vias in a semiconductor IC device having adequate contact to the surface of the interconnects and without inadequate landing is disclosed. The method has interconnects formed in a metal layer on the substrate of the IC device, and a first dielectric layer is formed covering the surface of the interconnects. An etch-stopping layer is then formed on top of the first dielectric layer, followed by the formation of a second dielectric layer on top of the etch-stopping layer. A photoresist layer then covers the second dielectric layer and reveals the surface regions of the second dielectric layer designated for the formation of the vias. A main etching procedure is then performed to etch into the second dielectric layer down to the surface of the etch-stopping layer, thereby forming the first section of the vias.
    Type: Grant
    Filed: December 30, 1997
    Date of Patent: November 2, 1999
    Assignee: United Microelectronics Corp.
    Inventors: Coming Chen, Chih-Chien Liu, Kun-Chih Wang, Tri-Rung Yew
  • Patent number: 5960299
    Abstract: A semiconductor fabrication method is provided for fabricating a shallow-trench isolation (STI) structure in an integrated circuit, which can prevent the occurrence of microscratches in the oxide plugs of the STI structure, thus further preventing the occurrence of a bridging effect and short-circuits between the circuit components that are intended to be electrically isolated by the STI structure. This method is characterized by the use of a laser annealing process to remove the microscratches that formed on the top surface of the oxide plugs during the chemical-mechanical polishing (CMP) process used to remove the upper part of the oxide layer to form the oxide plugs This method can therefore prevent the occurrence of a bridging effect and short-circuits due to the forming of the microscratches that would otherwise occur in the prior art.
    Type: Grant
    Filed: October 28, 1998
    Date of Patent: September 28, 1999
    Assignee: United Microelectronics Corp.
    Inventors: Tri-Rung Yew, Water Lur, Shih-Wei Sun
  • Patent number: 5959361
    Abstract: A dielectric pattern. On a substrate having a metal wiring layer formed thereon, a first dielectric layer and a first masking layer are formed. A cap insulation layer is formed on the masking layer. The first dielectric layer, the first masking layer and the cap insulation layer are penetrated through by a first opening. A second dielectric layer and a second masking layer are formed on the cap insulation layer. The second dielectric layer and the second masking layer are penetrated through by a second opening. The first and the second openings are contiguous without intermittence.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: September 28, 1999
    Assignee: United Microelectronics Corp.
    Inventors: Yimin Huang, Tri-Rung Yew
  • Patent number: 5956598
    Abstract: A semiconductor fabrication method is provided for fabricating a shallow-trench isolation (STI) structure with a rounded corner in integrated circuits through a rapid thermal process (RTP). In the fabrication of the STI structure, a sharp corner is often undesirably formed. This sharp corner , if not eliminated, causes the occurrence of a leakage current when the resultant IC device is in operation that significantly degrades the performance of the resultant IC device. To eliminate this sharp corner , an RTP is performed at a temperature of above 1,100.degree. C., which temperature is higher than the glass transition temperature of the substrate, for about 1 to 2 minutes. The result is that the surface of the substrate is oxidized into an sacrificial oxide layer and the sharp corner is deformed into a rounded shape with a larger convex radius of curvature. This allows the problems arising from the existence of the sharp corner to be substantially eliminated.
    Type: Grant
    Filed: October 1, 1998
    Date of Patent: September 21, 1999
    Assignee: United Microelectronics Corp.
    Inventors: Kuo-Tai Huang, Gwo-Shii Yang, Tri-Rung Yew, Water Lur
  • Patent number: 5930618
    Abstract: An integrated circuit device having both an array of logic circuits and embedded DRAM circuits is provided using a process that avoids some of the most significant processing challenges for embedded DRAM integration. Transfer FETs and wiring lines are provided for the embedded DRAM circuits and FETs are provided for the logic portions of the device. A thin, conformal oxide layer is provided over the surface of the device to cover the transfer FETs and the logic FETs to protect portions of the device during formation of the charge storage capacitors. A mask is provided having openings over the appropriate source/drain regions of the transfer FETs and the oxide layer is etched. A planar or substantially planar lower capacitor electrode is defined by providing and patterning a first layer of doped polysilicon over the thin protective oxide layer in contact with the desired source/drain regions of the transfer FETs.
    Type: Grant
    Filed: October 3, 1997
    Date of Patent: July 27, 1999
    Assignee: United Microelectronics Corp.
    Inventors: Shih-Wei Sun, Tri-Rung Yew
  • Patent number: 5869368
    Abstract: A high capacitance charge storage capacitor for a DRAM has a lower electrode in contact with one source/drain region of a transfer FET. The lower capacitor electrode includes a first layer of polysilicon deposited over part of the transfer FET and in contact with the source/drain region of the transfer FET. An oxide layer is deposited over the first polysilicon layer and then a sparse layer of hemispherical grained polysilicon is deposited on the surface of the oxide layer. The sparse layer of hemispherical grained polysilicon has grains on the order of approximately 100 nanometers across that are separated on the average by approximately 100 nanometers. The layer of oxide is etched using the sparse grains of hemispherical grained polysilicon as a mask, with the etch process stopping on the surface of the first layer of polysilicon.
    Type: Grant
    Filed: September 22, 1997
    Date of Patent: February 9, 1999
    Inventors: Tri-Rung Yew, Water Lur, Shih-Wei Sun
  • Patent number: 5801094
    Abstract: A dual damascene process forms a two level metal interconnect structure by first providing a interlayer oxide over a device structure and covering the interlevel oxide layer with an etch stop layer. The etch stop layer is patterned to form openings corresponding to the pattern of the interconnects that are to be formed in the first level of the two level interconnect structure. After the etch stop layer is patterned, an intermetal oxide layer is provided over the etch stop layer. Because the etch stop layer is relatively thin, the topography formed on the surface of the intermetal oxide layer is relatively small. A photoresist mask is then provided over the intermetal oxide layer with openings in the mask exposing portions of the intermetal oxide layer in the pattern of the wiring lines to be provided in the second level of the interconnect structure.
    Type: Grant
    Filed: June 12, 1997
    Date of Patent: September 1, 1998
    Assignee: United Microelectronics Corporation
    Inventors: Tri-Rung Yew, Meng-Chang Liu, Water Lur, Shih-Wei Sun
  • Patent number: 5753559
    Abstract: Hemispherical-grained silicon (HSG-Si) is grown on polysilicon by plasma deposition. A wider range of substrate deposition temperatures can be used in the plasma deposition of HSG-Si than can be maintained in the low pressure chemical vapor deposition (LPCVD) of HSG-Si. The plasma deposition of HSG-Si can be performed in an electron cyclotron resonance chemical vapor deposition (ECR-CVD) system at input power levels ranging from 100-1500 W, at total pressures between 5-60 mTorr, and at substrate temperatures ranging from 200.degree.-500.degree. C. A mixture of silane and hydrogen gases at a dilution ratio of silane within the silane and hydrogen gas mixture H.sub.2 /(SiH.sub.4 +H.sub.2) between about 70-99% may be used in the ECR-CVD system. The polysilicon surface is cleaned of native oxides prior to plasma deposition of HSG-Si.
    Type: Grant
    Filed: October 9, 1996
    Date of Patent: May 19, 1998
    Assignee: United Microelectronics Corporation
    Inventors: Tri-Rung Yew, Water Lur, Shih-Wei Sun