Patents by Inventor Tsung-Ching HUANG

Tsung-Ching HUANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150145579
    Abstract: A circuit includes a first circuit, a second circuit and a third circuit. The first circuit is configured to receive a first phase of a clock signal, a second phase of a clock signal and a first control signal. The first circuit is configured to generate a first interpolated phase of a clock signal. The second circuit is configured to receive a third phase of a clock signal, a fourth phase of a clock signal and a second control signal, and generate a second interpolated phase of a clock signal. The third circuit is configured to receive the first interpolated phase of the clock signal and the second interpolated phase of the clock signal, and generate the first control signal. The first control signal dynamically adjusts the first interpolated phase of the clock signal.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 28, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTUING COMPANY, LTD.
    Inventors: Chih-Chang LIN, Chan-Hong CHERN, Tsung-Ching HUANG, Ming-Chieh HUANG
  • Publication number: 20150145597
    Abstract: A multi-stage transimpedance amplifier (TIA) which includes a common gate amplifier configured to receive a current signal, the common gate amplifier is configured to convert the current signal into an amplified voltage signal. The multi-stage TIA further includes a capacitive degeneration amplifier configured to receive the amplified voltage signal, the capacitive degeneration amplifier is configured to equalize the amplified voltage signal to form an equalized signal. The multi-stage TIA further includes an inverter configured to receive the equalized signal, the inverter is configured to increase a signal strength of the equalized signal to form an output signal. The multi-stage TIA further includes a feedback configured to receive the output signal, wherein the feedback is connected to an input and an output of the inverter.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 28, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Ching HUANG, Chan-Hong CHERN, Ming-Chieh HUANG, Chih-Chang LIN
  • Publication number: 20150014518
    Abstract: A transimpedance amplifier includes a first inverter having a first input node and a first output node. The first input node is configured to receive an input signal. A second inverter has a second input node and a second output node. The second input node connects to a reference voltage terminal. The first inverter and the second inverter are configured to provide a differential output voltage signal between the first output node and the second output node. A first amplifier is configured to provide feedback to the first input node and a second amplifier is configured to provide feedback to the second input node.
    Type: Application
    Filed: October 1, 2014
    Publication date: January 15, 2015
    Inventors: Tsung-Ching HUANG, Chan-Hong CHERN, Tao Wen CHUNG, Ming-Chieh HUANG, Chih-Chang LIN
  • Patent number: 8903030
    Abstract: A clock data recovery circuit (CDR) extracts bit data values from a serial bit stream without reference to a transmitter clock. A controllable oscillator produces a regenerated clock signal controlled to match the frequency and phase of transitions between bits and the serial data is sampled at an optimal phase. A phase detector generates early-or-late indication bits for clock versus data transition times, which are accumulated and applied to a second order feedback control with two distinct feedback paths for frequency and phase, combined for correcting the controllable oscillator, selecting a sub-phase and/or determining an optimal phase at which the bit stream data values are sampled. The second order filter is operated at distinct rates such that the phase correction has a latency as short as one clock cycle and the frequency correction latency occurs over plural cycles.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: December 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tao Wen Chung, Chan-Hong Chern, Ming-Chieh Huang, Chih-Chang Lin, Yuwen Swei, Tsung-Ching Huang
  • Publication number: 20140347110
    Abstract: A circuit includes a capacitive-load voltage controlled oscillator having an input configured to receive a first input signal and an output configured to output an oscillating output signal. A calibration circuit is coupled to the voltage controlled oscillator and is configured to output one or more control signals to the capacitive-load voltage controlled oscillator for adjusting a frequency of the oscillating output signal. The calibration circuit is configured to output the one or more control signals in response to a comparison of an input voltage to at least one reference voltage.
    Type: Application
    Filed: August 11, 2014
    Publication date: November 27, 2014
    Inventors: Chan-Hong CHERN, Tao Wen CHUNG, Ming-Chieh HUANG, Chih-Chang LIN, Tsung-Ching HUANG, Fu-Lung HSUEH
  • Patent number: 8878585
    Abstract: A slicer includes a first latch. The first latch includes an evaluating transistor configured to receive a first clock signal. The first latch further includes a developing transistor configured to receive a second clock signal, wherein the first clock signal is different from the second clock signal. The first latch further includes a first input transistor configured to receive a first input. The first latch further includes a second input transistor configured to receive a second input, wherein the first and second input transistors are connected with the developing transistor. The first latch further includes at least one pre-charging transistor configured to receive a third clock signal, wherein the at least one pre-charging transistor is connected to a first output node and a second output node. The slicer further includes a second latch connected to the first and second output nodes and to a third output node.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: November 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Chieh Huang, Chan-Hong Chern, Tao Wen Chung, Chih-Chang Lin, Tsung-Ching Huang, Derek C. Tao
  • Patent number: 8872592
    Abstract: A transimpedance amplifier includes a first inverter having a first input node and a first output node. The first input node is configured to be coupled to an input signal. A second inverter has a second input node and a second output node. The second input node is configured to receive a reference voltage terminal. The first inverter and the second inverter are configured to provide a differential output voltage signal between the first output node and the second output node.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: October 28, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Ching Huang, Chan-Hong Chern, Tao Wen Chung, Ming-Chieh Huang, Chih-Chang Lin
  • Patent number: 8862951
    Abstract: A circuit includes a summation circuit for receiving an input data signal and a feedback signal including a previous data bit. The summation circuit is configured to output a conditioned input data signal to a clock and data recovery circuit. A first flip-flop is coupled to an output of the summation circuit and is configured to receive a first set of bits of the conditioned input data signal and a first clock signal having a frequency that is less than a frequency at which the input data signal is received by the first summation circuit. A second flip-flop is coupled to the output of the summation circuit and is configured to receive a second set of bits of the conditioned input data signal and a second clock signal having a frequency that is less than the frequency at which the input data signal is received by the first summation circuit.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: October 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Chieh Huang, Chan-Hong Chern, Tao Wen Chung, Yuwen Swei, Chih-Chang Lin, Tsung-Ching Huang
  • Patent number: 8847652
    Abstract: The present disclosure relates to a resonant clock system having a driver component, a clock load capacitor, and a reconfigurable inductor array. The driver component generates a driven input signal. The clock load capacitor is configured to receive the driven input signal. The inductor array is configured to have an effective inductance according to a selected frequency. The inductor array also generates a resonant signal at the selected frequency using the effective inductance.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: September 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chan-Hong Chern, Tao Wen Chung, Chih-Chang Lin, Ming-Chieh Huang, Tsung-Ching Huang, Fu-Lung Hsueh
  • Patent number: 8816732
    Abstract: A circuit includes a capacitive-load voltage controlled oscillator having an input configured to receive a first input signal and an output configured to output an oscillating output signal. A calibration circuit is coupled to the voltage controlled oscillator and is configured to output one or more control signals to the capacitive-load voltage controlled oscillator for adjusting a frequency of the oscillating output signal. The calibration circuit is configured to output the one or more control signals in response to a comparison of an input voltage to at least one reference voltage.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: August 26, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chan-Hong Chern, Tao Wen Chung, Ming-Chieh Huang, Chih-Chang Lin, Tsung-Ching Huang, Fu-Lung Hsueh
  • Publication number: 20140126656
    Abstract: A clock data recovery circuit (CDR) extracts bit data values from a serial bit stream without reference to a transmitter clock. A controllable oscillator produces a regenerated clock signal controlled to match the frequency and phase of transitions between bits and the serial data is sampled at an optimal phase. A phase detector generates early-or-late indication bits for clock versus data transition times, which are accumulated and applied to a second order feedback control with two distinct feedback paths for frequency and phase, combined for correcting the controllable oscillator, selecting a sub-phase and/or determining an optimal phase at which the bit stream data values are sampled. The second order filter is operated at distinct rates such that the phase correction has a latency as short as one clock cycle and the frequency correction latency occurs over plural cycles.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tao Wen CHUNG, Chan-Hong CHERN, Ming-Chieh HUANG, Chih-Chang LIN, Yuwen SWEI, Tsung-Ching HUANG
  • Publication number: 20140119426
    Abstract: A slicer includes a first latch. The first latch includes an evaluating transistor configured to receive a first clock signal. The first latch further includes a developing transistor configured to receive a second clock signal, wherein the first clock signal is different from the second clock signal. The first latch further includes a first input transistor configured to receive a first input. The first latch further includes a second input transistor configured to receive a second input, wherein the first and second input transistors are connected with the developing transistor. The first latch further includes at least one pre-charging transistor configured to receive a third clock signal, wherein the at least one pre-charging transistor is connected to a first output node and a second output node. The slicer further includes a second latch connected to the first and second output nodes and to a third output node.
    Type: Application
    Filed: January 8, 2014
    Publication date: May 1, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Chieh HUANG, Chan-Hong CHERN, Tao Wen CHUNG, Chih-Chang LIN, Tsung-Ching HUANG, Derek C. TAO
  • Patent number: 8643422
    Abstract: This description relates to a slicer including a first latch. The first latch includes an evaluating transistor configured to receive a first clock signal and a developing transistor configured to receive a second clock signal. The first clock signal is different from the second clock signal. The first latch includes first and second input transistors configured to receive first and second complementary inputs. The first latch includes at least one pre-charging transistor configured to receive a third clock signal. The first latch further at least one cross-latched pair of transistors, the at least one cross-latched transistor pair connected between the evaluating transistor and the first and second output nodes. The slicer includes a second latch connected to the first and second output nodes and to a third output node. The slicer includes a buffer connected to the third output node and configured to generate a final output signal.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: February 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Chieh Huang, Chan-Hong Chern, Tao Wen Chung, Chih-Chang Lin, Tsung-Ching Huang, Derek C. Tao
  • Publication number: 20140028407
    Abstract: The present disclosure relates to a resonant clock system having a driver component, a clock load capacitor, and a reconfigurable inductor array. The driver component generates a driven input signal. The clock load capacitor is configured to receive the driven input signal. The inductor array is configured to have an effective inductance according to a selected frequency. The inductor array also generates a resonant signal at the selected frequency using the effective inductance.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 30, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chan-Hong Chern, Tao Wen Chung, Chih-Chang Lin, Ming-Chieh Huang, Tsung-Ching Huang, Fu-Lung Hsueh
  • Publication number: 20140015582
    Abstract: This description relates to a slicer including a first latch. The first latch includes an evaluating transistor configured to receive a first clock signal and a developing transistor configured to receive a second clock signal. The first clock signal is different from the second clock signal. The first latch includes first and second input transistors configured to receive first and second complementary inputs. The first latch includes at least one pre-charging transistor configured to receive a third clock signal. The first latch further at least one cross-latched pair of transistors, the at least one cross-latched transistor pair connected between the evaluating transistor and the first and second output nodes. The slicer includes a second latch connected to the first and second output nodes and to a third output node. The slicer includes a buffer connected to the third output node and configured to generate a final output signal.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 16, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Chieh HUANG, Chan-Hong CHERN, Tao Wen CHUNG, Chih-Chang LIN, Tsung-Ching HUANG, Derek C. TAO
  • Publication number: 20140002332
    Abstract: A current value of a first pixel and/or a current value of a second pixel of a display are adjusted until a value of a current difference is acceptable. The current value of the first pixel corresponds to a brightness level of the first pixel. The current value of the second pixel corresponds to a brightness level of the second pixel. Adjusting the current value of the first pixel involves adjusting a threshold voltage value of a transistor of the first pixel. Adjusting the current value of the second pixel involves adjusting a threshold voltage value of a transistor of the second pixel.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Ching HUANG, Chan-Hong CHERN, Tao Wen CHUNG, Ming-Chieh HUANG, Chih-Chang LIN
  • Publication number: 20130346811
    Abstract: A circuit includes a summation circuit for receiving an input data signal and a feedback signal including a previous data bit. The summation circuit is configured to output a conditioned input data signal to a clock and data recovery circuit. A first flip-flop is coupled to an output of the summation circuit and is configured to receive a first set of bits of the conditioned input data signal and a first clock signal having a frequency that is less than a frequency at which the input data signal is received by the first summation circuit. A second flip-flop is coupled to the output of the summation circuit and is configured to receive a second set of bits of the conditioned input data signal and a second clock signal having a frequency that is less than the frequency at which the input data signal is received by the first summation circuit.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ming-Chieh HUANG, Chan-Hong CHERN, Tao Wen CHUNG, Yuwen SWEI, Chih-Chang LIN, Tsung-Ching HUANG
  • Publication number: 20130342247
    Abstract: A circuit includes a capacitive-load voltage controlled oscillator having an input configured to receive a first input signal and an output configured to output an oscillating output signal. A calibration circuit is coupled to the voltage controlled oscillator and is configured to output one or more control signals to the capacitive-load voltage controlled oscillator for adjusting a frequency of the oscillating output signal. The calibration circuit is configured to output the one or more control signals in response to a comparison of an input voltage to at least one reference voltage.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chan-Hong CHERN, Tao Wen CHUNG, Ming-Chieh HUANG, Chih-Chang LIN, Tsung-Ching HUANG, Fu-Lung HSUEH
  • Publication number: 20130335145
    Abstract: A transimpedance amplifier includes a first inverter having a first input node and a first output node. The first input node is configured to be coupled to an input signal. A second inverter has a second input node and a second output node. The second input node is configured to receive a reference voltage terminal. The first inverter and the second inverter are configured to provide a differential output voltage signal between the first output node and the second output node.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 19, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Ching HUANG, Chan-Hong CHERN, Tao Wen CHUNG, Ming-Chieh HUANG, Chih-Chang LIN