Patents by Inventor Tsung-Yi Chen

Tsung-Yi Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10448410
    Abstract: A method is shown for allocating a plurality of channels to a plurality of radio nodes (RNs) in a radio access network (RAN). In accordance with the method, an initial RN is selected from among the plurality of RNs. A first of the plurality of channels is assigned to the initial RN. The first channel is selected such that external interference experienced by the initial RN from sources other than the RAN on the first channel is minimized. A second RN is selected from among the plurality of RNs. A second of the plurality of channels is assigned to the second RN. The second channel is selected such that a metric reflective of an information carrying capacity of the RNs that have already been assigned one of the plurality of channels is maximized. The assigned channels are allocated to the respective RNs to which they have been assigned.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: October 15, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Tsung-Yi Chen, Hithesh Nama, Jaspreet Singh
  • Publication number: 20190306762
    Abstract: A method of coordinating a plurality of radio access networks (RANs) includes aggregating, with a gateway, communications interfaces between a plurality of RANs and a packet core network through the gateway. A plurality of radio nodes (RNs) in each of the RANs is communicatively coupled to the gateway and to user equipment (UE) devices associated with the RNs in each of the RANs. The gateway also controls and coordinates mobility of the UE devices within and among the RANs.
    Type: Application
    Filed: June 18, 2019
    Publication date: October 3, 2019
    Inventors: Tsung-Yi Chen, Jaspreet Singh, Peter J Worters
  • Patent number: 10393773
    Abstract: A probe card includes a probe seat having upper and lower dies and a probe accommodating hole, a spring probe inserted through the probe accommodating hole and including a spring sleeve having upper and lower non-spring sections, and a circuit board disposed on the upper die and having a contact pad against which the spring probe is abutted. At least one of the upper and lower dies has a stopping surface partially facing the probe accommodating hole and an extended portion inserting hole in alignment with the probe accommodating hole. At least one of the upper and lower non-spring sections has a cylinder portion abutted on the stopping surface and an extended portion inserted through the extended portion inserting hole.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: August 27, 2019
    Assignee: MPI Corporation
    Inventors: Tsung-Yi Chen, Ting-Hsin Kuo, Yi-Lung Lee, Shih-Shin Chen, Horng-Chuan Sun, Horng-Kuang Fan
  • Patent number: 10349313
    Abstract: A method of coordinating a plurality of radio access networks (RANs) includes aggregating, with a gateway, communications interfaces between a plurality of RANs and a packet core network through the gateway. A plurality of radio nodes (RNs) in each of the RANs is communicatively coupled to the gateway and to user equipment (UE) devices associated with the RNs in each of the RANs. The gateway also controls and coordinates mobility of the UE devices within and among the RANs.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: July 9, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Tsung-Yi Chen, Jaspreet Singh, Peter J. Worters
  • Publication number: 20190098666
    Abstract: Systems and methods for dynamically selecting and adjusting energy detection thresholds (EDTs) in uncoordinated radio nodes deploying Listen Before Talk to improve throughput on shared spectrum are disclosed. The uncoordinated radio nodes dynamically adjust an EDT to avoid harmful collisions with neighboring radio nodes or otherwise improve throughput over shared spectrum. A radio node can detect a collision or radio frequency (RF) interference from a neighboring radio node. Once the collision or RF interference is detected, the EDT of the radio node is dynamically adjusted. In some cases, the collision or RF interference can be avoided by calculating a throughput of the radio node while operating on each of a plurality of EDTs and selecting the EDT predicted to result in a higher throughput. In other cases, the EDT may be dynamically adjusted based on an iterative approach which incorporates measurements of the neighboring radio node.
    Type: Application
    Filed: November 28, 2018
    Publication date: March 28, 2019
    Inventors: Tsung-Yi Chen, Hithesh Nama, Jiadong Wang
  • Publication number: 20190098665
    Abstract: Systems and methods for dynamically selecting energy detection thresholds (EDTs) in radio nodes deploying listen before talk within a coordinated network to improve throughput on shared spectrum are disclosed. The radio nodes are configured to coordinate to deploy mechanisms to avoid or reduce interference issues, including collisions, with use of shared spectrum (e.g., unlicensed spectrum). One such mechanism is Listen Before Talk (LBT), and a radio node deploying LBT sets an EDT at which the radio node hears traffic from neighboring radio nodes on the shared spectrum. In an exemplary aspect, the EDT of radio nodes in the coordinated network of radio nodes can be dynamically selected and/or adjusted to improve throughput of the individual radio nodes and/or of the network of radio nodes as a whole.
    Type: Application
    Filed: November 27, 2018
    Publication date: March 28, 2019
    Inventors: Tsung-Yi Chen, Hithesh Nama, Jiadong Wang
  • Publication number: 20190053248
    Abstract: A method is shown for allocating a plurality of channels to a plurality of radio nodes (RNs) in a radio access network (RAN). In accordance with the method, an initial RN is selected from among the plurality of RNs. A first of the plurality of channels is assigned to the initial RN. The first channel is selected such that external interference experienced by the initial RN from sources other than the RAN on the first channel is minimized. A second RN is selected from among the plurality of RNs. A second of the plurality of channels is assigned to the second RN. The second channel is selected such that a metric reflective of an information carrying capacity of the RNs that have already been assigned one of the plurality of channels is maximized. The assigned channels are allocated to the respective RNs to which they have been assigned.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Inventors: Tsung-Yi Chen, Hithesh Nama, Jaspreet Singh
  • Publication number: 20180324818
    Abstract: A method for assessing an impact of a design choice on a system level performance metric of a radio access network (RAN) deployed in an environment includes receiving messages from a plurality of UEs over time by a plurality of RNs in the RAN. A design choice is selected for a set of operating parameters of the RAN. One or more of measurement values in each of the received messages and the selected design choice are processed to compute a set of derivatives. A system level performance metric is determined as a function of the computed set of derivatives.
    Type: Application
    Filed: July 16, 2018
    Publication date: November 8, 2018
    Inventors: Tsung-Yi Chen, Hithesh Nama, Jaspreet Singh
  • Patent number: 10119991
    Abstract: A vertical probe device includes a lower die having engaging holes and needle holes, a positioning film having limiting holes and needle holes, probe needles inserted through the needle holes, and supporters having at least an upper stopping surface and at least a lower stopping surface for moveably limiting the positioning film therebetween. Each supporter has a head, a neck passing through the limiting hole and having a length longer than the thickness of the positioning film, a body, and a tail inserted into the engaging hole, which are connected in order, and at least one of the upper and lower stopping surfaces. The supporters can prevent the positioning film from being lifted and flipped over and enables the positioning film to move so that the probe needles are reliable.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: November 6, 2018
    Assignee: MPI CORPORATION
    Inventors: Tsung-Yi Chen, Horng-Kuang Fan, Ching-Hung Yang, Chung-Tse Lee, Chia-Yuan Kuo, Tien-Chia Li, Ting-Ju Wu, Shang-Jung Hsieh
  • Patent number: 10111235
    Abstract: A method is shown for allocating a plurality of channels to a plurality of radio nodes (RNs) in a radio access network (RAN). In accordance with the method, an initial RN is selected from among the plurality of RNs. A first of the plurality of channels is assigned to the initial RN. The first channel is selected such that external interference experienced by the initial RN from sources other than the RAN on the first channel is minimized. A second RN is selected from among the plurality of RNs. A second of the plurality of channels is assigned to the second RN. The second channel is selected such that a metric reflective of an information carrying capacity of the RNs that have already been assigned one of the plurality of channels is maximized. The assigned channels are allocated to the respective RNs to which they have been assigned.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: October 23, 2018
    Assignee: SpiderCloud Wireless, Inc.
    Inventors: Jaspreet Singh, Tsung-Yi Chen, Hithesh Nama
  • Publication number: 20180288601
    Abstract: Systems and methods disclosed detect significant changes in the RN topology after an E-RAN system has been installed and provisioned. If a significant change is detected, the operator is notified through an alarm, and the operator can take action to correct it. For example, an RN whose location was moved may be disabled. Alternatively, the movement operation may be approved and the alarm cleared so long as the operation falls within certain approved guidelines or categories, e.g., is appropriately reported and a new location noted.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 4, 2018
    Inventors: Ruibin Song, Tsung-Yi Chen, Olivier Duval, Paresh Bhaya
  • Patent number: 9823272
    Abstract: A wafer testing probe card includes a printed circuit board, a flexible circuit board, an elastic piece, and a probe unit. The flexible circuit board is electrically connected to the printed circuit board. The elastic piece is disposed between the printed circuit board and the flexible circuit board. The probe unit includes a probe head and a plurality of probes. The probe head is fixed on the printed circuit board and has a plurality of through holes. The probes respectively pass through the through holes and move up and down relative to the probe head.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: November 21, 2017
    Assignee: MPI Corporation
    Inventors: Ming-Chi Chen, Tien-Chia Li, Dai-Jin Yeh, Tsung-Yi Chen, Chien-Kuei Wang
  • Patent number: 9746495
    Abstract: A probe device includes a spring probe and a probe seat. The spring probe includes a needle and a spring sleeve sleeved onto the needle and provided with at least one spring section and at least one non-spring section. The probe seat includes a plurality of dies stacked together and at least one guiding hole through which the spring probe is inserted. An upper edge and a lower edge of the guiding hole of the probe seat are arranged corresponding in position to the non-spring section of the spring sleeve. As a result, the spring probe is prevented from getting jammed due to the contact of the spring section of the spring sleeve with the upper and lower edges of the guiding hole.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: August 29, 2017
    Assignee: MPI Corporation
    Inventors: Chien-Chou Wu, Tsung-Yi Chen
  • Publication number: 20170245153
    Abstract: A method for assigning a percentage of a CSAT time cycle to each radio node (RN) in a plurality of RNs that belong to a small cell radio access network (RAN) having a central controller includes: (i) for each time cycle period during which the RNs share a channel with one or more nodes that employ a different radio access technology (RAT), assigning a default occupancy percentage of the time cycles to each of the RNs; (ii) determining if the default occupancy percentage is able to be increased without violating one or more co-existence principles pre-established for the RAT employed by the RNs in the RAN and the different RAT; (iii) increasing the occupancy percentage of the first RN if it is determined that the default occupancy percentage is able to be increased without violating the co-existence principles; and (iv) sequentially repeating (ii)-(iii) for each remaining RN in the RAN.
    Type: Application
    Filed: February 21, 2017
    Publication date: August 24, 2017
    Inventors: Jaspreet Singh, Tsung-Yi Chen, Hithesh Nama
  • Publication number: 20170238329
    Abstract: A method for assessing an impact of a design choice on a system level performance metric of a radio access network (RAN) deployed in an environment includes receiving messages from a plurality of UEs over time by a plurality of RNs in the RAN. A design choice is selected for a set of operating parameters of the RAN. One or more of measurement values in each of the received messages and the selected design choice are processed to compute a set of derivatives. A system level performance metric is determined as a function of the computed set of derivatives.
    Type: Application
    Filed: August 10, 2016
    Publication date: August 17, 2017
    Inventors: Jaspreet Singh, Tsung-Yi Chen, Hithesh Nama
  • Publication number: 20170238325
    Abstract: A method is shown for allocating a plurality of channels to a plurality of radio nodes (RNs) in a radio access network (RAN). In accordance with the method, an initial RN is selected from among the plurality of RNs. A first of the plurality of channels is assigned to the initial RN. The first channel is selected such that external interference experienced by the initial RN from sources other than the RAN on the first channel is minimized. A second RN is selected from among the plurality of RNs. A second of the plurality of channels is assigned to the second RN. The second channel is selected such that a metric reflective of an information carrying capacity of the RNs that have already been assigned one of the plurality of channels is maximized. The assigned channels are allocated to the respective RNs to which they have been assigned.
    Type: Application
    Filed: February 15, 2017
    Publication date: August 17, 2017
    Inventors: Jaspreet Singh, Tsung-Yi Chen, Hithesh Nama
  • Publication number: 20170153271
    Abstract: A probe seat of a vertical probe device includes a lower die, a middle die fixed on the lower die, at least one upper die fixed on the middle die, and at least one reinforcing die fixedly disposed in at least one through trough of the middle die. The lower die has lower probe holes located below the through trough, such that probes are be inserted through the lower probe holes respectively and inserted through the through trough. The at least one upper die has upper probe holes located above the through trough for the probes to be inserted therethrough. The at least one reinforcing die has middle probe holes for the probes to be inserted therethrough. As a result, the probe seat has improved rigidity to avoid bending.
    Type: Application
    Filed: November 29, 2016
    Publication date: June 1, 2017
    Inventors: Tsung-Yi CHEN, Shih-Shin CHEN
  • Patent number: 9651578
    Abstract: An assembly method of direct-docking probing device is provided. First, a space transforming plate made by back-end-of-line semiconductor manufacturing process is provided, so the thickness of the space transforming plate is predetermined by the client of probe card manufacturer. Then a reinforcing plate in which a plurality of circuits disposed is provided, which has larger mechanical strength than the space transforming plate. After that the reinforcing plate and the space transforming plate are joined and electrically connected by a plurality of solders so as to form a space transformer. Then, a conductive elastic member and a probe interface board are provided. Thereafter, the space transformer and the conductive elastic member are mounted on the probe interface board. After that, at least one vertical probe assembly having a plurality of vertical probes is mounted on the space transforming plate, and the vertical probes is electrically connected with the space transforming plate.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: May 16, 2017
    Assignee: MPI CORPORATION
    Inventors: Chien-Chou Wu, Ming-Chi Chen, Tsung-Yi Chen, Chung-Che Li
  • Patent number: 9643271
    Abstract: A method for making a support structure for a probing device includes a step of providing a substrate having first internal conductive lines, a carrier having second internal conductive lines and a thickness less than 2 mm for packaging an integrated circuit chip, solder balls, and photoresist support blocks made by lithography in a way that the solder balls and the photoresist support blocks are disposed between the substrate and the carrier, the photoresist support blocks separately arranged from each other, and at least one of the photoresist support blocks is disposed between two adjacent solder balls. The method further includes a step of electrically connecting the first internal conductive lines with the second internal conductive lines respectively by soldering the carrier and the substrate with the solder balls by reflow soldering.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: May 9, 2017
    Assignee: MPI Corporation
    Inventors: Kun-Han Hsieh, Huo-Kang Hsu, Kuan-Chun Chou, Tsung-Yi Chen, Chung-Tse Lee
  • Patent number: 9648757
    Abstract: A method of manufacturing a space transformer includes providing a carrier substrate made for a chip package, forming an insulated layer disposed on the carrier substrate, and forming a conductive block. The carrier substrate is formed with elongated first and second wires. The first wire has an elongated contact which is longer than the width of the first wire. The insulated layer is formed with a hole corresponding in position to the elongated contact. The conductive block is formed with an elongated connecting column located in the hole and connected with the elongated contact, and a cylindrical contact pad exposed at the outside of the insulated layer, larger-sized than the elongated connecting column is connected with the elongated connecting column. As a result, the cylindrical contact pad has sufficient area and structural strength for contact with a probe needle.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: May 9, 2017
    Assignee: MPI CORPORATION
    Inventors: Chung-Tse Lee, Chien-Chou Wu, Tsung-Yi Chen