Patents by Inventor Tsung-Yi Huang
Tsung-Yi Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11946733Abstract: An image rendering device and an image rendering method are disclosed. For the elements of the image rendering device, a first sensor and a second sensor are configured to sense a target object in a two-dimensional (2D) mode and three-dimensional (3D) mode to generate a first surface-color-signal, a first 3D-depth-signal, a second surface-color-signal and a second 3D-depth-signal respectively. An IR projector is configured to generate an IR-dot-pattern. A processor is configured to control the IR projector to project the IR-dot-pattern on the target object in the 3D mode, and configured to process the first surface-color-signal, the second surface-color-signal, the first 3D-depth-signal and the second 3D-depth-signal to obtain a color 3D model of the target object.Type: GrantFiled: October 14, 2021Date of Patent: April 2, 2024Assignee: EYS3D MICROELECTRONICS CO.Inventors: Kuan-Cheng Chung, Tsung-Yi Huang, Shi-Fan Chang
-
Patent number: 11855200Abstract: High-voltage semiconductor devices are disclosed, each having gate, source and drain electrodes. A deep well layer is formed on a substrate and has a surface, where the substrate and the deep well layer are of first-type and second-type conductivities, respectively. A field isolation layer on the surface isolates a drain active region from a source active region. The source electrode contacts the source active region on the surface to form an ohmic contact. The drain electrode contacts the drain active region on the surface. A first well layer of the first-type conductivity is formed on the surface and between the ohmic contact and the drain active region, and at least a portion of the first well layer is under the field isolation layer. A bottom layer of the first-type conductivity is formed at a bottom of the deep well layer. The gate electrode is on the field isolation layer.Type: GrantFiled: July 30, 2021Date of Patent: December 26, 2023Assignee: LEADTREND TECHNOLOGY CORPORATIONInventors: Tsung-Yi Huang, Deng-Sheng Huang
-
Patent number: 11658249Abstract: A high-voltage semiconductor device integrates a MOS transistor with a Schottky barrier diode. The MOS transistor has a semiconductor substrate of a first conduction type, a well of a second conduction, a body of the first conduction type, and a doped source of the second type. A control gate formed above the body controls electric connection between the doped source and the well. The Schottky barrier diode has a metal, functioning to be an anode of the Schottky barrier diode and contacting the well to form a Schottky barrier junction therebetween.Type: GrantFiled: September 30, 2020Date of Patent: May 23, 2023Assignee: LEADTREND TECHNOLOGY CORPORATIONInventors: Tsung-Yi Huang, Chun-Ming Hsu, Chiung-Fu Huang
-
Publication number: 20220231165Abstract: High-voltage semiconductor devices are disclosed, each having gate, source and drain electrodes. A deep well layer is formed on a substrate and has a surface, where the substrate and the deep well layer are of first-type and second-type conductivities, respectively. A field isolation layer on the surface isolates a drain active region from a source active region. The source electrode contacts the source active region on the surface to form an ohmic contact. The drain electrode contacts the drain active region on the surface. A first well layer of the first-type conductivity is formed on the surface and between the ohmic contact and the drain active region, and at least a portion of the first well layer is under the field isolation layer. A bottom layer of the first-type conductivity is formed at a bottom of the deep well layer. The gate electrode is on the field isolation layer.Type: ApplicationFiled: July 30, 2021Publication date: July 21, 2022Inventors: Tsung-Yi HUANG, Deng-Sheng HUANG
-
Publication number: 20220165880Abstract: A high voltage device includes: a semiconductor layer, a well, a body region, a gate, a source, a drain, and a drift oxide region. The semiconductor layer is formed on a substrate, wherein the semiconductor layer has at least one trench. The well is formed in the semicoducotor layer. The body region is formed in the well. The gate is formed on the well, and is in contact with the well. The source and the drain are located below, outside, and at different sides of the gate, in the body region and the well respectively. The drift oxide region is formed on a drift region, wherein a bottom surface of the drift oxide region is higher than a bottom surface of the trench.Type: ApplicationFiled: February 7, 2022Publication date: May 26, 2022Inventors: Tsung-Yi Huang, Kun-Huang Yu, Ying-Shiou Lin, Chu-Feng Chen, Chung-Yu Hung, Yi-Rong Tu
-
Publication number: 20220122315Abstract: An image rendering device and an image rendering method are disclosed. For the elements of the image rendering device, a first sensor and a second sensor are configured to sense a target object in a two-dimensional (2D) mode and three-dimensional (3D) mode to generate a first surface-color-signal, a first 3D-depth-signal, a second surface-color-signal and a second 3D-depth-signal respectively. An IR projector is configured to generate an IR-dot-pattern. A processor is configured to control the IR projector to project the IR-dot-pattern on the target object in the 3D mode, and configured to process the first surface-color-signal, the second surface-color-signal, the first 3D-depth-signal and the second 3D-depth-signal to obtain a color 3D model of the target object.Type: ApplicationFiled: October 14, 2021Publication date: April 21, 2022Inventors: Kuan-Cheng CHUNG, Tsung-Yi HUANG, Shi-Fan CHANG
-
Patent number: 11171232Abstract: A high voltage device for use as a lower switch in a power stage of a switching regulator includes at least one lateral diffused metal oxide semiconductor (LDMOS) device and at least one Schottky barrier diode (SBD). The LDMOS device includes: a well, a body region, a gate, a source, and a drain. The SBD includes a Schottky metal layer and a Schottky semiconductor layer. The Schottky metal layer is electrically connected to the source, and the Schottky semiconductor layer is in contact with the well.Type: GrantFiled: December 11, 2019Date of Patent: November 9, 2021Assignee: RICHTEK TECHNOLOGY CORPORATIONInventor: Tsung-Yi Huang
-
Patent number: 11063148Abstract: A high voltage depletion mode MOS device with adjustable threshold voltage includes: a first conductive type well region; a second conductive type channel region, wherein when the channel region is not depleted, the MOS device is conductive, and when the channel region is depleted, the MOS device is non-conductive; a second conductive type connection region which contacts the channel region; a first conductive type gate, for controlling the conductive condition of the MOS device; a second conductive type lightly doped diffusion region formed under a spacer layer of the gate and contacting the channel region; a second type source region; and a second type drain region contacting the connection region but not contacting the gate; wherein the gate has a first conductive type doping or both a first and a second conductive type doping, and wherein a net doping concentration of the gate is determined by a threshold voltage target.Type: GrantFiled: March 1, 2018Date of Patent: July 13, 2021Assignee: RICHTEK TECHNOLOGY CORPORATIONInventors: Tsung-Yi Huang, Ching-Yao Yang
-
Publication number: 20210135005Abstract: A high voltage device includes: a crystalline silicon layer, a well, a body region, a gate, a source, and a drain. The body region has a P-type conductivity type, and is formed in the well. The gate is located on and in contact with the well. The source and the drain have an N-type conductivity type, and are located below, outside, and at different sides of the gate, and are located in the body region and the well respectively. An inverse region is defined in the body region between the source and the well, to serve as an inverse current channel in an ON operation. The inverse region includes a germanium distribution region which has a germanium atom concentration higher than 1*1013 atoms/cm2. Adrift region is defined in the well, between the body region and the drain, to serve as a drift current channel in an ON operation.Type: ApplicationFiled: January 13, 2021Publication date: May 6, 2021Inventors: Tsung-Yi Huang, Kun-Huang Yu
-
Patent number: 10998404Abstract: A high voltage device includes: a semiconductor layer, an isolation structure, a first deep well, a second deep well, a drift well, a first well, a second well, a body region, a body contact, a high voltage well, a gate, and a source and a drain. The high voltage well is formed in the second deep well, and the high voltage well is not in contact with any of the first deep well, the first well, and the second well, wherein at least part of the high voltage well is located right below all of a drift region to suppress a latch-up current generated in the high voltage device.Type: GrantFiled: July 4, 2019Date of Patent: May 4, 2021Assignee: RICHTEK TECHNOLOGY CORPORATIONInventor: Tsung-Yi Huang
-
Publication number: 20210119061Abstract: A high-voltage semiconductor device integrates a MOS transistor with a Schottky barrier diode. The MOS transistor has a semiconductor substrate of a first conduction type, a well of a second conduction, a body of the first conduction type, and a doped source of the second type. A control gate formed above the body controls electric connection between the doped source and the well. The Schottky barrier diode has a metal, functioning to be an anode of the Schottky barrier diode and contacting the well to form a Schottky barrier junction therebetween.Type: ApplicationFiled: September 30, 2020Publication date: April 22, 2021Inventors: Tsung-Yi HUANG, Chun-Ming HSU, Chiung-Fu HUANG
-
Patent number: 10943978Abstract: An N-type high voltage device includes: a semiconductor layer, a well region, a floating region, a bias region, a body region, a body contact, a gate, a source and a drain. The floating region and the bias region both have P-type conductivity, and both are formed in a drift region in the well region. The bias region is electrically connected with a predetermined bias voltage, and the floating region is electrically floating, to increase a breakdown voltage of the high voltage device and to suppress turning-ON a parasitic transistor in the high voltage device.Type: GrantFiled: March 14, 2019Date of Patent: March 9, 2021Assignee: RICHTEK TECHNOLOGY CORPORATIONInventor: Tsung-Yi Huang
-
Patent number: 10923589Abstract: A high voltage device includes: a crystalline silicon layer, a well, a body region, a gate, a source, and a drain. The body region has a P-type conductivity type, and is formed in the well. The gate is located on and in contact with the well. The source and the drain have an N-type conductivity type, and are located below, outside, and at different sides of the gate, and are located in the body region and the well respectively. An inverse region is defined in the body region between the source and the well, to serve as an inverse current channel in an ON operation. The inverse region includes a germanium distribution region which has a germanium atom concentration higher than 1*1013 atoms/cm2. Adrift region is defined in the well, between the body region and the drain, to serve as a drift current channel in an ON operation.Type: GrantFiled: August 15, 2019Date of Patent: February 16, 2021Assignee: RICHTEK TECHNOLOGY CORPORATIONInventors: Tsung-Yi Huang, Kun-Huang Yu
-
Patent number: 10868115Abstract: A high voltage device includes: a semiconductor layer, an isolation region, a deep well, a buried layer, a first high voltage well, a first conductivity type well, a second high voltage well, a body region, a body contact, a deep well column, a gate, a source and a drain. The deep well column is located between the drain and a boundary of the conductive layer which is near the source in a channel direction. The deep well column is a minority carriers absorption channel, to avoid turning ON a parasitic transistor in the high voltage device.Type: GrantFiled: June 22, 2019Date of Patent: December 15, 2020Assignee: RICHTEK TECHNOLOGY CORPORATIONInventors: Tsung-Yi Huang, Chu-Feng Chen
-
Patent number: 10811532Abstract: A high voltage device includes: a semiconductor layer, an isolation structure, a drift oxide region, a well, a body region, a body contact, a buffer region, a gate, and a source and a drain. The body contact includes a main body contact and at least one sub-body contact. The main body contact is adjacent to the source, wherein the main body contact and the source are rectangles that extend along a width direction, and the source is located between the main body contact and the gate. The sub-body contact extends from the main body contact toward the gate and contacts an inverse current channel. The buffer region encompasses all the periphery of the body region below a top surface of the semiconductor layer, wherein an impurity concentration of the buffer region is lower than an impurity concentration of the body region.Type: GrantFiled: March 13, 2019Date of Patent: October 20, 2020Assignee: RICHTEK TECHNOLOGY CORPORATIONInventors: Tsung-Yi Huang, Chien-Yu Chen
-
Patent number: 10714612Abstract: A high voltage device includes: a semiconductor layer, an isolation structure, a drift oxide region, a well, a body region, a gate, at least one sub-gate, a source, a drain and a conductive connection structure. The drift oxide region is located on a drift region in an operation region. The sub-gate is formed on the drift oxide region in the operation region. The sub-gate is a rectangle shape extending along a width direction, and in parallel with the gate. A conductive connection structure connects the gate and the sub-gate.Type: GrantFiled: December 25, 2018Date of Patent: July 14, 2020Assignee: RICHTEK TECHNOLOGY CORPORATIONInventor: Tsung-Yi Huang
-
Publication number: 20200220005Abstract: A high voltage device for use as a lower switch in a power stage of a switching regulator includes at least one lateral diffused metal oxide semiconductor (LDMOS) device and at least one Schottky barrier diode (SBD). The LDMOS device includes: a well, a body region, a gate, a source, and a drain. The SBD includes a Schottky metal layer and a Schottky semiconductor layer. The Schottky metal layer is electrically connected to the source, and the Schottky semiconductor layer is in contact with the well.Type: ApplicationFiled: December 11, 2019Publication date: July 9, 2020Inventor: Tsung-Yi Huang
-
Publication number: 20200212207Abstract: A manufacturing method of a junction field effect transistor (JFET) includes: providing a substrate having a first conductivity type, forming a channel region having a second conductive type, forming a field region having the first conductivity type, forming a gate having the first conductivity type, forming a source having the second conductive type, forming a drain having the second conductive type, and forming a lightly doped region having the second conductive type. The channel region is formed by a first ion implantation process step, and the lightly doped region is formed by a second ion implantation process step. The second ion implantation process step implants first conductivity type impurities into a part of the channel region.Type: ApplicationFiled: October 30, 2019Publication date: July 2, 2020Inventor: Tsung-Yi Huang
-
Patent number: 10680104Abstract: A metal oxide semiconductor (MOS) device includes: a semiconductor layer, an isolation structure, a well, a gate, a source, a drain, a first lightly doped region, and a second lightly doped region. The first lightly doped region is located right below a spacer layer and a portion of a dielectric layer of the gate. In a channel direction, the first lightly doped region is between and contacts the drain and an inversion current channel. The second lightly doped region includes a first part and a second part. The first part is located right below the spacer which is near the source, and the first part is between and contacts the source and the inversion current channel. The second part is located right below the spacer which is near the drain, and the second part is between and contacts the drain and the first lightly doped region.Type: GrantFiled: March 13, 2019Date of Patent: June 9, 2020Assignee: RICHTEK TECHNOLOGY CORPORATIONInventor: Tsung-Yi Huang
-
Patent number: 10680059Abstract: A high voltage MOS device includes: a well, a drift region, a gate, a source, a drain, and plural buried columns. A part of the gate is stacked on a part of the well, and another part of the gate is stacked on a part of the drift region. The source connects the well in a lateral direction. The drain connects the drift region in the lateral direction. The drain and the source are separated by the well and the drift region, and the drain and the source are located at different sides of the gate. The plural buried columns are formed beneath the top surface by a predetermined distance, and each buried column does not connect the top surface. At least a part of every buried column is surrounded by the drift region, and the buried columns and the drift region are arranged in an alternating manner.Type: GrantFiled: September 13, 2018Date of Patent: June 9, 2020Assignee: RICHTEK TECHNOLOGY CORPORATIONInventors: Tsung-Yi Huang, Chu-Feng Chen