Patents by Inventor Tung-Heng Hsieh

Tung-Heng Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130157452
    Abstract: A described method includes providing a semiconductor substrate. A first gate structure is formed on the semiconductor substrate and a sacrificial gate structure formed adjacent the first gate structure. The sacrificial gate structure may be used to form a metal gate structure using a replacement gate methodology. A dielectric layer is formed overlying the first gate structure and the sacrificial gate structure. The dielectric layer has a first thickness above a top surface of the first gate structure and a second thickness, less than the first thickness, above a top surface of the sacrificial gate structure. (See, e.g., FIGS. 5, 15, 26). Thus, a subsequent planarization process of the dielectric layer may not contact the first gate structure.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 20, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd. ("TSMC")
    Inventors: Jian-Hao Chen, Chia-Yu Lu, Tung-Heng Hsieh, Kuo-Feng Yu, Chin-Shan Hou, Hsien-Chin Lin, Shyue-Shyh Lin
  • Publication number: 20130126953
    Abstract: Methods and apparatus for polysilicon MOS capacitors in a replacement gate process. A method includes disposing a gate dielectric layer over a semiconductor substrate; disposing a polysilicon gate layer over the dielectric layer; patterning the gate dielectric layer and the polysilicon gate layer to form a plurality of polysilicon gates spaced by at least a minimum polysilicon to polysilicon pitch; defining a polysilicon resistor region containing at least one of the polysilicon gates and not containing at least one other of the polysilicon gates, which form dummy gates; depositing a mask layer over an inter-level dielectric layer; patterning the mask layer to expose the dummy gates; removing the dummy gates and the gate dielectric layer underneath the dummy gates to leave trenches in the inter-level dielectric layer; and forming high-k metal gate devices in the trenches in the inter-level dielectric layer. An apparatus produced by the method is disclosed.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pai-Chieh Wang, Tung-Heng Hsieh, Yimin Huang, Chung-Hui Chen
  • Publication number: 20130126955
    Abstract: Methods and apparatus for hybrid MOS capacitors in replacement gate process. A method is disclosed including patterning a gate dielectric layer and a polysilicon gate layer to form a polysilicon gate region over a substrate; forming an inter-level dielectric layer over the substrate and surrounding the polysilicon gate region; defining polysilicon resistor regions each containing at least one portion of the polysilicon gate region and not containing at least one other portion of the polysilicon gate region, forming dummy gate regions removing the dummy gate regions and the gate dielectric layer underneath the dummy gate regions to leave trenches; and forming high-k metal gate devices in the trenches. A capacitor region including a high-k metal gate and a polysilicon gate next to the high-k metal gate is disclosed. Additional hybrid capacitor apparatuses are disclosed.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pai-Chieh Wang, Tung-Heng Hsieh, Yimin Huang
  • Patent number: 7897501
    Abstract: A method of fabricating a semiconductor device is disclosed. The method of fabricating a semiconductor device provides a semiconductor substrate; forming a gate stack overlying the semiconductor substrate; forming spacers each having a first inner spacer and a second outer spacer on sidewalls of the gate stack; forming a protective layer on sidewalls of the spacers, covering a part of the semiconductor substrate, wherein an etching selectivity of the protective layer is higher than that of the first inner spacer.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: March 1, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien-Li Cheng, Sun-Jay Chang, Tung-Heng Hsieh, Yung-Shen Chen
  • Publication number: 20080268602
    Abstract: A method of fabricating a semiconductor device is disclosed. The method of fabricating a semiconductor device provides a semiconductor substrate; forming a gate stack overlying the semiconductor substrate; forming spacers each having a first inner spacer and a second outer spacer on sidewalls of the gate stack; forming a protective layer on sidewalls of the spacers, covering a part of the semiconductor substrate, wherein an etching selectivity of the protective layer is higher than that of the first inner spacer.
    Type: Application
    Filed: January 14, 2008
    Publication date: October 30, 2008
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Li Cheng, Sun-Jay Chang, Tung-Heng Hsieh, Yung-Shun Chen
  • Patent number: 7382028
    Abstract: A method for forming silicide and a semiconductor device formed thereby. A Si-containing polycrystalline region is converted to an amorphous region, and annealed to form a regrown polycrystalline region having an increased grain size. A silicide layer is formed by reacting a metal and the regrown polycrystalline region having the increased grain size.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: June 3, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tung-Heng Hsieh, Chien-Li Cheng, Yi-Shien Mor, Yung-Shun Chen
  • Publication number: 20070224808
    Abstract: A silicided gate for CMOS transistors and a method of manufacture is provided. A gate electrode is formed on a substrate. A first dielectric layer is formed over the gate electrode and the substrate, and a second dielectric layer is formed over the first dielectric layer. The second dielectric layer is etched to form spacers adjacent the gate electrode. A treatment is performed on the first dielectric layer over the gate electrode, wherein the treatment increases the effective etch rate of the first dielectric layer as compared to untreated portions of the first dielectric layer. An etching procedure is then performed to expose the surface of the gate electrode, the etching procedure recessing the liner along sidewalls of the gate electrode. Thereafter, a silicide procedure is performed to silicide at least a portion of the gate electrode.
    Type: Application
    Filed: March 23, 2006
    Publication date: September 27, 2007
    Inventors: Tsung-Hsien Chang, Tung-Heng Hsieh, Chung-Cheng Wu, Shou Chang
  • Publication number: 20060231910
    Abstract: A method for forming silicide and a semiconductor device formed thereby. A Si-containing polycrystalline region is converted to an amorphous region, and annealed to form a regrown polycrystalline region having an increased grain size. A silicide layer is formed by reacting a metal and the regrown polycrystalline region having the increased grain size.
    Type: Application
    Filed: April 15, 2005
    Publication date: October 19, 2006
    Inventors: Tung-Heng Hsieh, Chien-Li Cheng, Yi-Shien Mor, Yung-Shun Chen