Patents by Inventor Tza-Jing Gung

Tza-Jing Gung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10553398
    Abstract: Embodiments of inductively coupled plasma (ICP) reactors are provided herein. In some embodiments, a dielectric window for an inductively coupled plasma reactor includes: a body including a first side, a second side opposite the first side, an edge, and a center, wherein the dielectric window has a dielectric coefficient that varies spatially. In some embodiments, an apparatus for processing a substrate includes: a process chamber having a processing volume disposed beneath a lid of the process chamber; and one or more inductive coils disposed above the lid to inductively couple RF energy into and to form a plasma in the processing volume above a substrate support disposed within the processing volume; wherein the lid is a dielectric window comprising a first side and an opposing second side that faces the processing volume, and wherein the lid has a dielectric coefficient that spatially varies to provide a varied power coupling of RF energy from the one or more inductive coils to the processing volume.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: February 4, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Samer Banna, Tza-Jing Gung, Vladimir Knyazik, Kyle Tantiwong, Dan A. Marohl, Valentin N. Todorow, Stephen Yuen
  • Patent number: 10541159
    Abstract: Embodiments disclosed herein relate to a processing chamber having a lens disposed therein. In one embodiment, the processing chamber includes a chamber body, a substrate support assembly, a light source, and a lens. The chamber body defines an interior volume of the processing chamber. The interior volume has a first area and a second area. The substrate support assembly is disposed in the second area. The substrate support assembly is configured to support a substrate. The light source is disposed above the substrate support assembly in the first area. The lens is disposed between the light source and the substrate support assembly. The lens includes a plurality of features formed therein. The plurality of features is configured to preferentially direct light from the light source to an area of interest on the substrate when disposed on the substrate support assembly.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: January 21, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Orlando Trejo, Ramprakash Sankarakrishnan, Tza-Jing Gung
  • Publication number: 20200013661
    Abstract: Electrostatic chucks with variable pixelated magnetic field are described. For example, an electrostatic chuck (ESC) includes a ceramic plate having a front surface and a back surface, the front surface for supporting a wafer or substrate. A base is coupled to the back surface of the ceramic plate. A plurality of electromagnets is disposed in the base, the plurality of electromagnets configured to provide pixelated magnetic field tuning capability for the ESC.
    Type: Application
    Filed: September 19, 2019
    Publication date: January 9, 2020
    Inventors: Chih-Hsun Hsu, Tza-Jing Gung, Benjamin Schwarz, Shahid Rauf, Ankur Agarwal, Vijay D. Parkhe, Michael D. Willwerth, Zhiqiang Guo
  • Patent number: 10515796
    Abstract: Embodiments described herein relate to methods of forming silicon nitride films. In one embodiment, a first process gas set including a silicon-containing gas and a first nitrogen-containing gas is flowed into the process chamber. An initiation layer is deposited by applying a first radio frequency power to the first process gas set at a first frequency and a first power level. The first flow of the first nitrogen-containing gas of the first process gas set is discontinued and a second process gas set including the silicon-containing gas, a second nitrogen-containing gas, and a hydrogen-containing gas is flowed into the process chamber. A bulk silicon nitride layer is deposited on the initiation layer by applying a second RF power to the second process gas set at a second frequency higher than the first frequency and a second power level higher than the first power level.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: December 24, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael Wenyoung Tsiang, Hang Yu, Deenesh Padhi, Tza-Jing Gung
  • Patent number: 10460968
    Abstract: Electrostatic chucks with variable pixelated magnetic field are described. For example, an electrostatic chuck (ESC) includes a ceramic plate having a front surface and a back surface, the front surface for supporting a wafer or substrate. A base is coupled to the back surface of the ceramic plate. A plurality of electromagnets is disposed in the base, the plurality of electromagnets configured to provide pixelated magnetic field tuning capability for the ESC.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: October 29, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Chih-Hsun Hsu, Tza-Jing Gung, Benjamin Schwarz, Shahid Rauf, Ankur Agarwal, Vijay D. Parkhe, Michael D. Willwerth, Zhiqiang Guo
  • Patent number: 10410889
    Abstract: In some embodiments, a plasma processing apparatus includes a processing chamber to process a substrate; a mounting surface defined within the processing chamber to support a substrate disposed within the processing chamber; a showerhead disposed within the processing chamber and aligned so as to face the mounting surface, the showerhead defining a plurality of orifices to introduce a process gas into the processing chamber toward a substrate disposed within the processing chamber; and one or more magnets supported by the showerhead and arranged so that a radial component of a magnetic field applied by each of the one or more magnets has a higher flux density proximate a first region corresponding to an edge surface region of a substrate when disposed within the processing chamber than at a second region corresponding to an interior surface region of a substrate when disposed within the processing chamber.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: September 10, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: S. M. Reza Sadjadi, Haitao Wang, Jie Zhou, Tza-Jing Gung, Chunlei Zhang, Fernando M. Silveira
  • Publication number: 20190233940
    Abstract: Embodiments herein provide for radical based treatment of silicon nitride layers deposited using a flowable chemical vapor deposition (FCVD) process. Radical based treatment of the FCVD deposited silicon nitride layers desirably increases the number of stable Si—N bonds therein, removes undesirably hydrogen impurities therefrom, and desirably provides for further crosslinking, densification, and nitridation (nitrogen incorporation) in the resulting silicon nitride layer. In one embodiment, a method of forming a silicon nitride layer includes positioning a substrate on a substrate support disposed in the processing volume of a processing chamber and treating a silicon nitride layer deposited on the substrate. Treating the silicon nitride layer includes flowing one or more radical species of a first gas comprising NH3, N2, H2, Ar, He, or combinations thereof and exposing a silicon nitride layer to the radical species.
    Type: Application
    Filed: January 24, 2019
    Publication date: August 1, 2019
    Inventors: Jinrui GUO, Jingmei LIANG, Praket P. JHA, Tejasvi ASHOK, Tza-Jing GUNG
  • Publication number: 20190157077
    Abstract: Embodiments described herein relate to methods of forming silicon nitride films. In one embodiment, a first process gas set including a silicon-containing gas and a first nitrogen-containing gas is flowed into the process chamber. An initiation layer is deposited by applying a first radio frequency power to the first process gas set at a first frequency and a first power level. The first flow of the first nitrogen-containing gas of the first process gas set is discontinued and a second process gas set including the silicon-containing gas, a second nitrogen-containing gas, and a hydrogen-containing gas is flowed into the process chamber. A bulk silicon nitride layer is deposited on the initiation layer by applying a second RF power to the second process gas set at a second frequency higher than the first frequency and a second power level higher than the first power level.
    Type: Application
    Filed: October 31, 2018
    Publication date: May 23, 2019
    Inventors: Michael Wenyoung TSIANG, Hang YU, Deenesh PADHI, Tza-Jing GUNG
  • Patent number: 10249479
    Abstract: Embodiments described herein generally relate to plasma process apparatus. In one embodiment, the plasma process apparatus includes a plasma source assembly. The plasma source assembly may include a first coil, a second coil surrounding the first coil, and a magnetic device disposed outside the first and inside the second coil. The magnet enables additional tuning which improves uniformity control of the processes on the substrate.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: April 2, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Joseph F. Aubuchon, Tza-Jing Gung, Travis Lee Koh, Nattaworn Boss Nunta, Sheng-Chin Kung, Steven Lane, Kartik Ramaswamy, Yang Yang
  • Publication number: 20190074176
    Abstract: Aspects disclosed herein relate to methods of depositing pure silicon oxide on a substrate using Octamethylcyclotetrasiloxane (OMCTS) precursor. In one aspect, the method generally includes positioning a substrate in a processing chamber, introducing an oxygen-containing gas into the processing chamber, introducing OMCTS precursor into the processing chamber, and reacting the oxygen-containing gas and the OMCTS precursor to remove carbon and deposit pure silicon oxide on the substrate.
    Type: Application
    Filed: September 4, 2018
    Publication date: March 7, 2019
    Inventors: Lei GUO, Praket P. JHA, Milind GADRE, Deenesh PADHI, Tza-Jing GUNG
  • Publication number: 20180330980
    Abstract: Implementations disclosed herein relate to methods for forming and filling trenches in a substrate with a flowable dielectric material. In one implementation, the method includes subjecting a substrate having at least one trench to a deposition process to form a flowable layer over a bottom surface and sidewall surfaces of the trench in a bottom-up fashion until the flowable layer reaches a predetermined deposition thickness, subjecting the flowable layer to a first curing process, the first curing process being a UV curing process, subjecting the UV cured flowable layer to a second curing process, the second curing process being a plasma or plasma-assisted process, and performing sequentially and repeatedly the deposition process, the first curing process, and the second curing process until the plasma cured flowable layer fills the trench and reaches a predetermined height over a top surface of the trench.
    Type: Application
    Filed: May 11, 2018
    Publication date: November 15, 2018
    Inventors: Jingmei LIANG, Yong SUN, Jinrui GUO, Praket P. JHA, Jung Chan LEE, Tza-Jing GUNG, Mukund SRINIVASAN
  • Patent number: 10115566
    Abstract: Methods and apparatus for controlling a magnetic field in a plasma chamber are provided herein. In some embodiments, a process chamber liner may include a cylindrical body, an inner electromagnetic cosine-theta (cos ?) coil ring including a first plurality of inner coils embedded in the body and configured to generate a magnetic field in a first direction, and an outer electromagnetic cosine-theta (cos ?) coil ring including a second plurality of outer coils embedded in the body and configured to generate a magnetic field in a second direction orthogonal to the first direction, wherein the outer electromagnetic cos ? coil ring is disposed concentrically about the inner electromagnetic cos ? coil ring.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: October 30, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Steven Lane, Tza-Jing Gung, Kartik Ramaswamy, Travis Koh, Joseph F. Aubuchon, Yang Yang
  • Patent number: 10109462
    Abstract: A tuning apparatus enables control of the flow of radio-frequency (RF) current in a plasma processing chamber at multiple RF frequencies. The apparatus is configured to provide a first path to ground from the chamber for RF power at a first frequency and a second path to ground from the chamber for RF power at a second frequency, where the first path to ground and the second path to ground each include a variable energy storage element. When adjusted, the variable energy storage element in the first path to ground modifies the impedance of the first path to ground, thereby changing RF current flow through the first path to ground at the first frequency. Adjusting the variable energy storage element in the second path to ground modifies the impedance of the second path to ground, thereby changing RF current flow through the second path to ground at the second frequency.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: October 23, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Edward P. Hammond, IV, Abdul Aziz Khaja, Tza-Jing Gung
  • Publication number: 20180261431
    Abstract: A tuning apparatus enables control of the flow of radio-frequency (RF) current in a plasma processing chamber at multiple RF frequencies. The apparatus is configured to provide a first path to ground from the chamber for RF power at a first frequency and a second path to ground from the chamber for RF power at a second frequency, where the first path to ground and the second path to ground each include a variable energy storage element. When adjusted, the variable energy storage element in the first path to ground modifies the impedance of the first path to ground, thereby changing RF current flow through the first path to ground at the first frequency. Adjusting the variable energy storage element in the second path to ground modifies the impedance of the second path to ground, thereby changing RF current flow through the second path to ground at the second frequency.
    Type: Application
    Filed: March 13, 2018
    Publication date: September 13, 2018
    Inventors: Edward P. HAMMOND, IV, Abdul Aziz KHAJA, Tza-Jing GUNG
  • Patent number: 10060024
    Abstract: Target assemblies and PVD chambers including target assemblies are disclosed. The target assembly includes a target that has a concave shaped target. When used in a PVD chamber, the concave target provides more radially uniform deposition on a substrate disposed in the sputtering chamber.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: August 28, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Zhendong Liu, Rongjun Wang, Xianmin Tang, Srinivas Gandikota, Tza-Jing Gung, Muhammad M. Rasheed
  • Publication number: 20180087155
    Abstract: In one implementation, a sputtering showerhead assembly is provided. The sputtering showerhead assembly comprises a faceplate comprising a sputtering surface comprising a target material and a second surface opposing the sputtering surface, wherein a plurality of gas passages extend from the sputtering surface to the second surface. The sputtering showerhead assembly comprises further comprises a backing plate positioned adjacent to the second surface of the faceplate. The backing plate comprises a first surface and a second surface opposing the first surface. The sputtering showerhead assembly has a plenum defined by the first surface of the backing plate and the second surface of the faceplate. The sputtering showerhead assembly comprises further comprises one or more magnetrons positioned along the second surface of the backing plate.
    Type: Application
    Filed: September 14, 2017
    Publication date: March 29, 2018
    Inventors: Anantha K. SUBRAMANI, Tza-Jing GUNG, Praburam GOPALRAJA, Hari K. PONNEKANTI
  • Publication number: 20180073150
    Abstract: Implementations described herein generally relate to metal oxide deposition in a processing chamber. More specifically, implementations disclosed herein relate to a combined chemical vapor deposition and physical vapor deposition chamber. Utilizing a single oxide metal deposition chamber capable of performing both CVD and PVD advantageously reduces the cost of uniform semiconductor processing. Additionally, the single oxide metal deposition system reduces the time necessary to deposit semiconductor substrates and reduces the foot print required to process semiconductor substrates. In one implementation, the processing chamber includes a gas distribution plate disposed in a chamber body, one or more metal targets disposed in the chamber body, and a substrate support disposed below the gas distribution plate and the one or more targets.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 15, 2018
    Inventors: Anantha K. SUBRAMANI, Praburam GOPALRAJA, Tza-Jing GUNG, Hari K. PONNEKANTI, Philip Allan KRAUS
  • Publication number: 20170350001
    Abstract: Target assemblies and PVD chambers including target assemblies are disclosed. The target assembly includes a target that has a concave shaped target. When used in a PVD chamber, the concave target provides more radially uniform deposition on a substrate disposed in the sputtering chamber.
    Type: Application
    Filed: August 17, 2017
    Publication date: December 7, 2017
    Inventors: Zhendong Liu, Rongjun Wang, Xianmin Tang, Srinivas Gandikota, Tza-Jing Gung, Muhammad M. Rasheed
  • Publication number: 20170345649
    Abstract: Embodiments disclosed herein relate to a processing chamber having a lens disposed therein. In one embodiment, the processing chamber includes a chamber body, a substrate support assembly, a light source, and a lens. The chamber body defines an interior volume of the processing chamber. The interior volume has a first area and a second area. The substrate support assembly is disposed in the second area. The substrate support assembly is configured to support a substrate. The light source is disposed above the substrate support assembly in the first area. The lens is disposed between the light source and the substrate support assembly. The lens includes a plurality of features formed therein. The plurality of features is configured to preferentially direct light from the light source to an area of interest on the substrate when disposed on the substrate support assembly.
    Type: Application
    Filed: May 26, 2016
    Publication date: November 30, 2017
    Inventors: Orlando TREJO, Ramprakash SANKARAKRISHNAN, Tza-Jing GUNG
  • Patent number: 9779953
    Abstract: Methods and apparatus for plasma-enhanced substrate processing are provided herein. In some embodiments, an apparatus for processing a substrate includes: a process chamber having an internal processing volume disposed beneath a dielectric lid of the process chamber; a substrate support disposed in the process chamber; two or more concentric inductive coils disposed above the dielectric lid to inductively couple RF energy into the processing volume above the substrate support; and an electromagnetic dipole disposed proximate a top surface of the dielectric lid between two adjacent concentric inductive coils of the two or more concentric inductive coils.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: October 3, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Joseph F. Aubuchon, Tza-Jing Gung, Samer Banna