Patents by Inventor Tze-Yang Yeh

Tze-Yang Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240247882
    Abstract: A liquid-cooling heat dissipation structure having a nonlinear fin array and a method for manufacturing the same are provided. The liquid-cooling heat dissipation structure includes an upper plate, a lower plate, and a flow guide member. The upper plate has an accommodating groove of which an inner side has an upper joint area formed thereon. The lower plate has a lower joint area. The flow guide member disposed between the upper plate and the lower plate includes a heat dissipation plate body having a first surface and a second surface, and a plurality of heat dissipation columns integrally disposed on the second surface. The upper brazing area is connected to the lower brazing area, and two ends of the flow guide member are respectively connected to the upper joint area and the lower joint area to form an enclosed cavity for accommodating the heat dissipation columns.
    Type: Application
    Filed: January 23, 2023
    Publication date: July 25, 2024
    Inventors: KUO-WEI LEE, CHIEN-CHENG WU, CHUN-LUNG WU, TZE-YANG YEH
  • Patent number: 12048119
    Abstract: An immersion-type liquid cooling heat dissipation sink is provided. The immersion-type liquid cooling heat dissipation sink includes a heat dissipation substrate layer and a surface film layer. The surface film layer is formed on the heat dissipation substrate layer. The heat dissipation substrate layer is a porous substrate that is immersed in an immersion-type coolant. A contact angle between the surface film layer and the immersion-type coolant is less than a contact angle between the heat dissipation substrate layer and the immersion-type coolant. A thickness of the surface film layer is less than an effective thickness of 5 ?m.
    Type: Grant
    Filed: March 3, 2022
    Date of Patent: July 23, 2024
    Assignee: AMULAIRE THERMAL TECHNOLOGY, INC.
    Inventors: Chi-An Chen, Tze-Yang Yeh
  • Publication number: 20240237309
    Abstract: An automotive liquid-cooling cooler structure is provided, which includes: a liquid-cooling cooler body, an outer frame, and a reserved structure. The liquid-cooling cooler body is located in a frame opening of the outer frame, the reserved structure is located at a gap between the liquid-cooling cooler body and the outer frame, and the reserved structure is configured for joining the liquid-cooling cooler body to the outer frame by friction stir welding.
    Type: Application
    Filed: January 9, 2023
    Publication date: July 11, 2024
    Inventors: Kuo-Wei LEE, Tze-Yang YEH
  • Publication number: 20240224464
    Abstract: A liquid-cooling heat dissipation plate with unequal height pin-fins and an enclosed liquid-cooling cooler having the same are provided. The liquid-cooling heat dissipation plate includes a heat dissipation plate body, a plurality of full-height pin-fins, and a plurality of non-full-height pin-fins. The heat dissipation plate body has a first heat dissipation surface and a second heat dissipation surface that face away from each other, the first heat dissipation surface is configured to be in contact with a plurality of heat sources, and the second heat dissipation surface is configured to be in contact with a cooling fluid. The full-height and non-full-height pin-fins are formed at the second heat dissipation surface of the heat dissipation plate body. A first heat dissipation region to an Nth heat dissipation region are defined on the heat dissipation plate body along a flowing direction of the cooling fluid.
    Type: Application
    Filed: December 28, 2022
    Publication date: July 4, 2024
    Inventors: YI-HSIN HUANG, CHUN-LUNG WU, KUO-WEI LEE, TZE-YANG YEH
  • Patent number: 11988467
    Abstract: A liquid-cooling heat dissipation plate with pin-fins and an enclosed liquid cooler having the same are provided. The liquid-cooling heat dissipation plate includes a heat dissipation plate body, a plurality of rhombus-shaped pin-fins, and a plurality of ellipse-shaped pin-fins. The heat dissipation plate body has a first heat dissipation surface and a second heat dissipation surface opposite to each other. The first heat dissipation surface is in contact with a heat source, and the second heat dissipation surface is in contact with a cooling fluid. The rhombus-shaped pin-fins and the ellipse-shaped pin-fins are integrally formed on the second heat dissipation surface and in a high density arrangement. The ellipse-shaped pin-fins correspond in position to a relative low temperature region of the heat source, and the rhombus-shaped pin-fins correspond in position to a relative high temperature region of the heat source.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: May 21, 2024
    Assignee: AMULAIRE THERMAL TECHNOLOGY, INC.
    Inventors: Ching-Ming Yang, Chun-Lung Wu, Tze-Yang Yeh
  • Publication number: 20240155809
    Abstract: A two-phase immersion-type heat dissipation structure having fins for facilitating bubble generation is provided. The two-phase immersion-type heat dissipation structure includes a heat dissipation substrate, and a plurality of fins. The heat dissipation substrate has a fin surface and a non-fin surface that face away from each other, the non-fin surface is configured to be in contact with a heat source immersed in a two-phase coolant, and the fin surface is connected with the plurality of fins. More than half of the fins are functional fins, and at least one side surface of each of the functional fins and the fin surface have an included angle therebetween that is from 80 degrees to 100 degrees. A center line average roughness (Ra) of the side surface is less than 3 ?m, and a ten-point average roughness (Rz) of the side surface is not less than 12 ?m.
    Type: Application
    Filed: November 6, 2022
    Publication date: May 9, 2024
    Inventors: CHUN-TE WU, CHING-MING YANG, YU-WEI CHIU, TZE-YANG YEH
  • Publication number: 20240155808
    Abstract: A two-phase immersion-cooling heat-dissipation composite structure is provided. The heat-dissipation composite structure includes a heat dissipation base, a plurality of high-thermal-conductivity fins, and at least one high-porosity solid structure. The heat dissipation base has a first surface and a second surface that face away from each other. The second surface of the heat dissipation base is in contact with a heating element immersed in a two-phase coolant. The first surface of the heat dissipation base is connected to the high-thermal-conductivity fins. The at least one high-porosity solid structure is located at the first surface of the heat dissipation base, and is connected and alternately arranged between side walls of two adjacent ones of the high-thermal-conductivity fins. Each of the high-porosity solid structure includes a plurality of closed holes and a plurality of open holes.
    Type: Application
    Filed: November 4, 2022
    Publication date: May 9, 2024
    Inventors: CHUN-TE WU, CHING-MING YANG, YU-WEI CHIU, TZE-YANG YEH
  • Publication number: 20240155807
    Abstract: A two-phase immersion-type heat dissipation structure having acute-angle notched structures is provided. The two-phase immersion-type heat dissipation structure includes a heat dissipation substrate, and a plurality of fins. The heat dissipation substrate has a fin surface and a non-fin surface that face away from each other, the non-fin surface is configured to be in contact with a heat source immersed in a two-phase coolant, and the fin surface is connected with the fins. More than half of the fins are functional fins, and at least one side surface of each of the functional fins has first and second surfaces defined thereon and connected to each other. An angle between the first surface and the fin surface is from 80 degrees to 100 degrees, and an angle between the second surface and the fin surface is less than 75 degrees.
    Type: Application
    Filed: November 4, 2022
    Publication date: May 9, 2024
    Inventors: CHUN-TE WU, CHING-MING YANG, YU-WEI CHIU, TZE-YANG YEH
  • Publication number: 20240142181
    Abstract: A two-phase immersion-type heat dissipation structure having skived fin with high porosity is provided. The two-phase immersion-type heat dissipation structure having skived fin with high porosity includes a porous heat dissipation structure having a total porosity that is equal to or greater than 5%. The porous heat dissipation structure includes a porous substrate and a plurality of porous and skived fins. The porous substrate has a first surface and a second surface that face away from each other. The second surface of the porous substrate is configured to be in contact with a heating element that is immersed in a two-phase coolant. The plurality of porous and skived fins are integrally formed on the first surface of the porous substrate by skiving. A first porosity of the plurality of porous and skived fins is greater than a second porosity of the porous substrate.
    Type: Application
    Filed: October 27, 2022
    Publication date: May 2, 2024
    Inventors: CHUN-TE WU, CHING-MING YANG, YU-WEI CHIU, TZE-YANG YEH
  • Publication number: 20240147662
    Abstract: A two-phase immersion-type heat dissipation structure having a porous structure is provided. The two-phase immersion-type heat dissipation structure includes a heat dissipation substrate, a plurality of fins, and a reinforcement frame. The heat dissipation substrate has a fin surface and a non-fin surface that face away from each other, the non-fin surface is configured to be in contact with a heat source immersed in a two-phase coolant, and the fins are integrally formed on the fin surface. A porous structure is covered onto at least one portion of the fin surface and at least one portion of the plurality of fins, and has a porosity of from 10% to 50% and a thickness that is from 0.1 mm to 1 mm. The reinforcement frame is bonded to the heat dissipation substrate and surrounds another one portion of the plurality of fins.
    Type: Application
    Filed: November 1, 2022
    Publication date: May 2, 2024
    Inventors: CHING-MING YANG, CHUN-TE WU, TZE-YANG YEH
  • Publication number: 20240142180
    Abstract: A two-phase immersion-type heat dissipation structure is provided. The two-phase immersion-type heat dissipation structure includes a heat dissipation substrate and a plurality of non-vertical fins. The heat dissipation substrate has a fin surface and a non-fin surface that face away from each other. The non-fin surface is configured to be in contact with a heating element immersed in a two-phase coolant. The fin surface is connected with the non-vertical fins, a cross-sectional contour of one of the non-vertical fins has a top end point and a bottom end point connected with the fin surface, and the top and bottom end points are opposite to each other. A length of a cross-sectional contour line defined from the top end point to the bottom end point is greater than a perpendicular line length of a perpendicular line defined from the top end point to the fin surface.
    Type: Application
    Filed: November 1, 2022
    Publication date: May 2, 2024
    Inventors: CHING-MING YANG, CHUN-TE WU, TZE-YANG YEH
  • Publication number: 20240102741
    Abstract: A heat dissipation structure having a heat pipe is provided. The heat dissipation structure includes a heat dissipation base, a plurality of fins, at least one heat pipe, and at least a first heat dissipation contact material and a second heat dissipation contact material that are different from one another. The heat dissipation base has a first and a second heat dissipation surface opposite to each other. The second heat dissipation surface is connected to the fins. At least one recessed trough is concavely formed on the first heat dissipation surface. The at least one heat pipe is located in the at least one recessed trough. The first and the second heat dissipation contact material are filled in the at least one recessed trough. A melting point of the second heat dissipation contact material is smaller than a melting point of the first heat dissipation contact material.
    Type: Application
    Filed: September 22, 2022
    Publication date: March 28, 2024
    Inventors: CHING-MING YANG, CHUN-TE WU, TZE-YANG YEH
  • Publication number: 20240090173
    Abstract: A two-phase immersion-type heat dissipation structure having high density heat dissipation fins is provided. The two-phase immersion-type heat dissipation structure having high density heat dissipation fins includes a heat dissipation substrate, a plurality of sheet-like heat dissipation fins, and a reinforcement structure. A bottom surface of the heat dissipation substrate is in contact with a heating element immersed in a two-phase coolant. The plurality of sheet-like heat dissipation fins are integrally formed on an upper surface of the heat dissipation substrate and arranged in high density. An angle between at least one of the sheet-like heat dissipation fins and the upper surface of the heat dissipation substrate is from 60° to 120°. At least one of the sheet-like heat dissipation fins has a length from 50 mm to 120 mm, a width from 0.1 mm to 0.35 mm, and a height from 2 mm to 8 mm.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 14, 2024
    Inventors: TZE-YANG YEH, CHING-MING YANG, CHUN-TE WU
  • Publication number: 20240085125
    Abstract: An immersion-type heat dissipation structure having high density heat dissipation fins is provided, which includes a heat dissipation substrate and the plurality of sheet-like heat dissipation fins. A thickness of the heat dissipation substrate is from 2 mm to 6 mm, and a bottom surface of the heat dissipation substrate contacts a heating element immersed in a two-phase coolant. The sheet-like heat dissipation fins are integrally formed on an upper surface of the heat dissipation substrate and arranged in high density. A length, a width, and a height of at least one of the sheet-like heat dissipation fins are from 60 mm to 120 mm, from 0.1 mm to 0.5 mm, and from 3 mm to 10 mm, respectively. Further, a distance between at least two of the sheet-like heat dissipation fins that are arranged in parallel to each other is from 0.1 mm to 0.5 mm.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 14, 2024
    Inventors: TZE-YANG YEH, CHING-MING YANG, CHUN-TE WU
  • Publication number: 20240060729
    Abstract: A liquid-cooling heat dissipation plate with pin-fins and an enclosed liquid cooler having the same are provided. The liquid-cooling heat dissipation plate includes a heat dissipation plate body, a plurality of rhombus-shaped pin-fins, and a plurality of ellipse-shaped pin-fins. The heat dissipation plate body has a first heat dissipation surface and a second heat dissipation surface opposite to each other. The first heat dissipation surface is in contact with a heat source, and the second heat dissipation surface is in contact with a cooling fluid. The rhombus-shaped pin-fins and the ellipse-shaped pin-fins are integrally formed on the second heat dissipation surface and in a high density arrangement. The ellipse-shaped pin-fins correspond in position to a relative low temperature region of the heat source, and the rhombus-shaped pin-fins correspond in position to a relative high temperature region of the heat source.
    Type: Application
    Filed: August 18, 2022
    Publication date: February 22, 2024
    Inventors: CHING-MING YANG, CHUN-LUNG WU, TZE-YANG YEH
  • Patent number: 11895778
    Abstract: An etching method for manufacturing a substrate structure having a thick electrically conductive layer, and a substrate structure having a thick electrically conductive layer are provided.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: February 6, 2024
    Assignee: AMULAIRE THERMAL TECHNOLOGY, INC.
    Inventors: Shih-Hsi Tai, Tung-Ho Tao, Tze-Yang Yeh
  • Publication number: 20240040747
    Abstract: A two-phase immersion-type heat dissipation structure having skived fins is provided. The two-phase immersion-type heat dissipation structure includes an upper cover structure, a lower cover structure, the plurality of skived fins, and a reinforcement frame. The skived fins are integrally formed on an upper surface of the upper cover structure by a skiving process. A bottom surface of the upper cover structure has an upper sintering structure formed thereon, and an upper surface of the lower cover structure has a lower sintering structure formed thereon. A bottom surface of the lower cover structure contacts a heating element immersed in a two-phase coolant. The lower cover structure is correspondingly bonded to the upper cover structure. An inner chamber that is vacuum-sealed is formed between the bottom surface of the upper cover structure and the upper surface of the lower cover structure, and contains liquid therein.
    Type: Application
    Filed: July 27, 2022
    Publication date: February 1, 2024
    Inventors: CHING-MING YANG, CHUN-TE WU, TZE-YANG YEH
  • Publication number: 20230363111
    Abstract: An immersion-type liquid cooling heat dissipation structure is provided. The immersion-type liquid cooling heat dissipation structure includes a metal heat dissipation substrate layer and a metal film layer. The metal film layer is formed on a surface of the metal heat dissipation substrate layer, and is configured to be immersed in an immersion-type coolant. An effective thickness of the metal film layer is less than 500 µm. A surface of the metal film layer has a plurality of micropores that facilitate generation of vapor bubbles. An effective width of each of the plurality of micropores is between 1 µm and 200 µm, and a depth of each of the plurality of micropores is between 100 nm and 50 µm.
    Type: Application
    Filed: May 8, 2022
    Publication date: November 9, 2023
    Inventors: KUO-WEI LEE, CHING-MING YANG, CHI-AN CHEN, TZE-YANG YEH
  • Publication number: 20230332848
    Abstract: A radiator structure is provided. The radiator structure includes a substrate, a first metal coating layer and a second metal coating layer. The first metal coating layer and the second metal coating layer are made of materials different from one another, and are formed on the substrate by different processes. The first metal coating layer is a non-first masking area formed on the substrate by wet processing. The second metal coating layer is a non-second masking area correspondingly formed on the first metal coating layer and the substrate by sputtering. A first masking area and a second masking area are not necessarily the same.
    Type: Application
    Filed: June 17, 2023
    Publication date: October 19, 2023
    Inventors: KUO-WEI LEE, TSUNG-RUEI SUEI, MIN-HORNG LIU, TZE-YANG YEH
  • Patent number: 11761719
    Abstract: A two-phase immersion-type heat dissipation structure having fins with different thermal conductivities is provided. The two-phase immersion-type heat dissipation structure includes a heat dissipation substrate, and a plurality of fins. The heat dissipation substrate has a fin surface and a non-fin surface that face away from each other. The non-fin surface is configured to be in contact with a heating element immersed in a two-phase coolant. The fin surface is connected with the plurality of fins. At least one of the plurality of fins is a functional fin that is made of a single metal material and has two or more thermal conductivities. A thermal conductivity of a lower portion of the functional fin that is connected with the heat dissipation substrate is lower than thermal conductivities of other portions of the functional fin.
    Type: Grant
    Filed: October 19, 2022
    Date of Patent: September 19, 2023
    Assignee: AMULAIRE THERMAL TECHNOLOGY, INC.
    Inventors: Ching-Ming Yang, Chun-Te Wu, Tze-Yang Yeh