Patents by Inventor Tzu-Chiang Chen

Tzu-Chiang Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210119078
    Abstract: This disclosure discloses a light-emitting device. The light-emitting device includes a light-emitting stack having a first-type semiconductor layer, a second-type semiconductor layer, and an active layer formed between the first-type semiconductor layer and the second-type semiconductor layer; and a reflective structure formed on the first-type semiconductor layer and having a first interface and a second interface. A critical angle at the first interface for a light emitted from the light-emitting stack is larger than that at the second interface. The reflective structure electrically connects to the first-type semiconductor layer at the first interface, and an area of the first interface is more than an area of the second interface in a top view.
    Type: Application
    Filed: December 7, 2020
    Publication date: April 22, 2021
    Inventors: Yi-Ming CHEN, Hao-Min KU, Chih-Chiang LU, Tzu-Chieh HSU
  • Patent number: 10964798
    Abstract: A semiconductor device and a method of manufacturing the same are disclosed. The semiconductor device includes semiconductor wires disposed over a substrate, a source/drain epitaxial layer in contact with the semiconductor wires, a gate dielectric layer disposed on and wrapping around each channel region of the semiconductor wires, a gate electrode layer disposed on the gate dielectric layer and wrapping around the each channel region, and dielectric spacers disposed in recesses formed toward the source/drain epitaxial layer.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: March 30, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Cheng, Yu-Lin Yang, Wei-Sheng Yun, Chen-Feng Hsu, Tzu-Chiang Chen
  • Publication number: 20210091229
    Abstract: A semiconductor device includes a substrate, a first poly-material pattern, a first conductive element, a first semiconductor layer, and a first gate structure. The first poly-material pattern is over and protrudes outward from the substrate, wherein the first poly-material pattern includes a first active portion and a first poly-material portion joined to the first active portion. The first conductive element is over the substrate, wherein the first conductive element includes the first poly-material portion and a first metallic conductive portion covering at least one of a top surface and a sidewall of the first poly-material portion. The first semiconductor layer is over the substrate and covers the first active portion of the first poly-material pattern and the first conductive element. The first gate structure is over the first semiconductor layer located within the first active portion.
    Type: Application
    Filed: September 22, 2019
    Publication date: March 25, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chao-Ching Cheng, Chun-Chieh Lu, Hung-Li Chiang, Tzu-Chiang Chen
  • Publication number: 20210083082
    Abstract: A process is provided to fabricate a finFET device having a semiconductor layer of a two-dimensional “2D” semiconductor material. The semiconductor layer of the 2D semiconductor material is a thin film layer formed over a dielectric fin-shaped structure. The 2D semiconductor layer extends over at least three surfaces of the dielectric fin structure, e.g., the upper surface and two sidewall surfaces. A vertical protrusion metal structure, referred to as “metal fin structure”, is formed about an edge of the dielectric fin structure and is used as a seed to grow the 2D semiconductor material.
    Type: Application
    Filed: September 17, 2019
    Publication date: March 18, 2021
    Inventors: Chao-Ching Cheng, Hung-Li Chiang, Chun-Chieh Lu, Ming-Yang Li, Tzu- Chiang Chen
  • Patent number: 10950693
    Abstract: In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed. A sacrificial gate structure is formed over the fin structure. The first semiconductor layers, the second semiconductor layer and an upper portion of the fin structure at a source/drain region of the fin structure, which is not covered by the sacrificial gate structure, are etched. A dielectric layer is formed over the etched upper portion of the fin structure. A source/drain epitaxial layer is formed. The source/drain epitaxial layer is connected to ends of the second semiconductor wires, and a bottom of the source/drain epitaxial layer is separated from the fin structure by the dielectric layer.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: March 16, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Lin Yang, Chao-Ching Cheng, Tzu-Chiang Chen, I-Sheng Chen
  • Publication number: 20210066627
    Abstract: A method includes forming a first low-dimensional layer over an isolation layer, forming a first insulator over the first low-dimensional layer, forming a second low-dimensional layer over the first insulator, forming a second insulator over the second low-dimensional layer, and patterning the first low-dimensional layer, the first insulator, the second low-dimensional layer, and the second insulator into a protruding fin. Remaining portions of the first low-dimensional layer, the first insulator, the second low-dimensional layer, and the second insulator form a first low-dimensional strip, a first insulator strip, a second low-dimensional strip, and a second insulator strip, respectively. A transistor is then formed based on the protruding fin.
    Type: Application
    Filed: April 1, 2020
    Publication date: March 4, 2021
    Inventors: Chao-Ching Cheng, Tzu-Ang Chao, Chun-Chieh Lu, Hung-Li Chiang, Tzu-Chiang Chen, Lain-Jong Li
  • Publication number: 20210057539
    Abstract: In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed. A sacrificial gate structure is formed over the fin structure. A source/drain region of the fin structure, which is not covered by the sacrificial gate structure, is etched, thereby forming a source/drain space. The first semiconductor layers are laterally etched through the source/drain space. An inner spacer made of a dielectric material is formed on an end of each of the etched first semiconductor layers. A source/drain epitaxial layer is formed in the source/drain space to cover the inner spacer. A lateral end of each of the first semiconductor layers has a V-shape cross section after the first semiconductor layers are laterally etched.
    Type: Application
    Filed: October 26, 2020
    Publication date: February 25, 2021
    Inventors: Kuo-Cheng CHIANG, Chen-Feng HSU, Chao-Ching CHENG, Tzu-Chiang CHEN, Tung Ying LEE, Wei-Sheng YUN, Yu-Lin YANG
  • Patent number: 10930795
    Abstract: A nanowire FET device includes a vertical stack of nanowire strips configured as the semiconductor body. One or more of the top nanowire strips are receded and are shorter than the rest of the nanowire strips stacked lower. Inner spacers are uniformly formed adjacent to the receded nanowire strips and the rest of the nanowire strips. Source/drain structures are formed outside the inner spacers and a gate structure is formed inside the inner spacers, which wraps around the nanowire strips.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: February 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: I-Sheng Chen, Chao-Ching Cheng, Tzu-Chiang Chen, Carlos H Diaz
  • Patent number: 10930498
    Abstract: The current disclosure describes techniques for forming a low resistance junction between a source/drain region and a nanowire channel region in a gate-all-around FET device. A semiconductor structure includes a substrate, multiple separate semiconductor nanowire strips vertically stacked over the substrate, a semiconductor epitaxy region adjacent to and laterally contacting each of the multiple separate semiconductor nanowire strips, a gate structure at least partially over the multiple separate semiconductor nanowire strips, and a dielectric structure laterally positioned between the semiconductor epitaxy region and the gate structure. The first dielectric structure has a hat-shaped profile.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: February 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tzu-Chung Wang, Chao-Ching Cheng, Tzu-Chiang Chen, Tung Ying Lee
  • Publication number: 20210036119
    Abstract: A gate-all-around structure is provided. The gate-all-around structure includes a plurality of nanostructures stacked over a substrate in a vertically direction, and the nanostructures extends from a gate region to a source/drain (S/D) region. The gate-all-around structure includes a gate structure formed in the gate region around the first nanostructures, and a S/D structure formed in the S/D region.
    Type: Application
    Filed: October 15, 2020
    Publication date: February 4, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chao-Ching CHENG, Yu-Lin YANG, I-Sheng CHEN, Tzu-Chiang CHEN
  • Publication number: 20210035633
    Abstract: A memory device that includes at least one memory cell is introduced. Each of the at least one memory cell is coupled to a bit line and a word line. Each of the at least one memory cell includes a memory element and a selector element, in which the memory element is configured to store data of the at least one memory cell. The selector element is coupled to the memory element in series and is configured to select the memory element for a read operation and amplify the data stored in the memory element in the read operation.
    Type: Application
    Filed: March 2, 2020
    Publication date: February 4, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Li Chiang, Chao-Ching Cheng, Tzu-Chiang Chen, Yu-Sheng Chen, Hon-Sum Philip Wong
  • Patent number: 10886182
    Abstract: In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers containing Ge and second semiconductor layers are alternately stacked, is formed over a bottom fin structure. A Ge concentration in the first semiconductor layers is increased. A sacrificial gate structure is formed over the fin structure. A source/drain epitaxial layer is formed over a source/drain region of the fin structure. The sacrificial gate structure is removed. The second semiconductor layers in a channel region are removed, thereby releasing the first semiconductor layers in which the Ge concentration is increased. A gate structure is formed around the first semiconductor layers in which the Ge concentration is increased.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: January 5, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Cheng, I-Sheng Chen, Hung-Li Chiang, Tzu-Chiang Chen
  • Patent number: 10879130
    Abstract: Semiconductor device structures are provided. The semiconductor device structure includes first semiconductor wires over a semiconductor substrate. The first semiconductor wires are vertically spaced apart from each other. The semiconductor device structure also includes a gate stack surrounding first portions of the first semiconductor wires, and a spacer element surrounding second portions of the first semiconductor wires. The first portions have a first width and the second portions have a second width. In addition, the semiconductor device structure includes a second semiconductor wire between the second portions. The second semiconductor wire has a third width, and the third width is substantially equal to the second width and greater than the first width.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Hung-Li Chiang, I-Sheng Chen, Tzu-Chiang Chen, Tung-Ying Lee, Szu-Wei Huang, Huan-Sheng Wei
  • Publication number: 20200403095
    Abstract: A method for forming a multi-gate semiconductor device includes forming a fin structure including alternating stacked first semiconductor layers and second semiconductor layers over a substrate, forming a dummy gate structure across the fin structure, forming a first spacer alongside the dummy gate structure, removing a first portion of the first spacer to expose the dummy gate structure, forming a second spacer between a second portion of first spacer and the dummy gate structure after removing the first portion of the first spacer, removing the dummy gate structure to expose a sidewall of the second spacer, removing the first semiconductor layers of the fin structure to form a plurality of nanostructures from the second semiconductor layers of the fin structure, and forming a gate conductive structure to wrap around the plurality of nanostructures. The gate conductive structure is in contact with the sidewall of the second spacer.
    Type: Application
    Filed: September 3, 2020
    Publication date: December 24, 2020
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: I-Sheng CHEN, Tzu-Chiang CHEN, Cheng-Hsien WU, Ling-Yen YEH, Carlos H. DIAZ
  • Patent number: 10872825
    Abstract: A semiconductor device includes a first plurality of stacked nanowire structures extending in a first direction disposed over a first region of a semiconductor substrate. Each nanowire structure of the first plurality of stacked nanowire structures includes a plurality of nanowires arranged in a second direction substantially perpendicular to the first direction. A nanowire stack insulating layer is between the substrate and a nanowire closest to the substrate of each nanowire structure of the first plurality of stacked nanowire structures. At least one second stacked nanowire structure is disposed over a second region of the semiconductor substrate, and a shallow trench isolation layer is between the first region and the second region of the semiconductor substrate.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: December 22, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Li Chiang, I-Sheng Chen, Tzu-Chiang Chen
  • Patent number: 10868127
    Abstract: Present disclosure provides gate-all-around structure including a first transistor. The first transistor includes a semiconductor substrate having a top surface, a first nanowire over the top surface of the semiconductor substrate and between a first source and a first drain, a first gate structure around the first nanowire, an inner spacer between the first gate structure and the first source and first drain, and an isolation layer between the top surface of the semiconductor substrate and the first source and the first drain. Present disclosure also provides a method for manufacturing the gate-all-around structure described herein.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Cheng, Yu-Lin Yang, I-Sheng Chen, Tzu-Chiang Chen
  • Patent number: 10868114
    Abstract: The structure of a semiconductor device with isolation structures between FET devices and a method of fabricating the semiconductor device are disclosed. A method of fabricating the semiconductor device includes forming a fin structure on a substrate and forming polysilicon gate structures with a first threshold voltage on first fin portions of the fin structure. The method further includes forming doped fin regions with dopants of a first type conductivity on second fin portions of the fin structure, doping at least one of the polysilicon gate structures with dopants of a second type conductivity to adjust the first threshold voltage to a greater second threshold voltage, and replacing at least two of the polysilicon gate structures adjacent to the at least one of the polysilicon gate structures with metal gate structures having a third threshold voltage less than the first and second threshold voltages.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: December 15, 2020
    Inventors: Hung-Li Chiang, Chao-Ching Cheng, Tzu-Chiang Chen, I-Sheng Chen
  • Patent number: 10861750
    Abstract: A method of manufacturing a semiconductor device includes forming a plurality of fin structures extending in a first direction over a semiconductor substrate. Each fin structure includes a first region proximate to the semiconductor substrate and a second region distal to the semiconductor substrate. An electrically conductive layer is formed between the first regions of a first adjacent pair of fin structures. A gate electrode structure is formed extending in a second direction substantially perpendicular to the first direction over the fin structure second region, and a metallization layer including at least one conductive line is formed over the gate electrode structure.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: December 8, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Li Chiang, Chih-Liang Chen, Tzu-Chiang Chen, I-Sheng Chen, Lei-Chun Chou
  • Publication number: 20200357914
    Abstract: A semiconductor device includes a fin field effect transistor (FinFET). The FinFET includes a channel disposed on a fin, a gate disposed over the channel and a source and drain. The channel includes at least two pairs of a first semiconductor layer and a second semiconductor layer formed on the first semiconductor layer. The first semiconductor layer has a different lattice constant than the second semiconductor layer. A thickness of the first semiconductor layer is three to ten times a thickness of the second semiconductor layer at least in one pair.
    Type: Application
    Filed: July 27, 2020
    Publication date: November 12, 2020
    Inventors: Chao-Ching CHENG, Chih Chieh YEH, Cheng-Hsien WU, Hung-Li CHIANG, Jung-Piao CHIU, Tzu-Chiang CHEN, Tsung-Lin LEE, Yu-Lin YANG, I-Sheng CHEN
  • Publication number: 20200343446
    Abstract: Various embodiments of the present disclosure are directed towards a resistive random access memory (RRAM) device including a scavenger layer. A bit line overlying a semiconductor substrate. A data storage layer around outer sidewalls and a top surface of the bit line. A word line overlying the data storage layer. A scavenger layer between the word line and the bit line such that a bottom surface of the scavenger layer is aligned with a bottom surface of the bit line. A lateral thickness of the scavenger layer is less than a vertical thickness of the scavenger layer.
    Type: Application
    Filed: April 25, 2019
    Publication date: October 29, 2020
    Inventors: Hung-Li Chiang, Chao-Ching Cheng, Tzu-Chiang Chen, Yu-Sheng Chen