Patents by Inventor Tzu-Chiang Chen

Tzu-Chiang Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10879130
    Abstract: Semiconductor device structures are provided. The semiconductor device structure includes first semiconductor wires over a semiconductor substrate. The first semiconductor wires are vertically spaced apart from each other. The semiconductor device structure also includes a gate stack surrounding first portions of the first semiconductor wires, and a spacer element surrounding second portions of the first semiconductor wires. The first portions have a first width and the second portions have a second width. In addition, the semiconductor device structure includes a second semiconductor wire between the second portions. The second semiconductor wire has a third width, and the third width is substantially equal to the second width and greater than the first width.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Hung-Li Chiang, I-Sheng Chen, Tzu-Chiang Chen, Tung-Ying Lee, Szu-Wei Huang, Huan-Sheng Wei
  • Publication number: 20200403095
    Abstract: A method for forming a multi-gate semiconductor device includes forming a fin structure including alternating stacked first semiconductor layers and second semiconductor layers over a substrate, forming a dummy gate structure across the fin structure, forming a first spacer alongside the dummy gate structure, removing a first portion of the first spacer to expose the dummy gate structure, forming a second spacer between a second portion of first spacer and the dummy gate structure after removing the first portion of the first spacer, removing the dummy gate structure to expose a sidewall of the second spacer, removing the first semiconductor layers of the fin structure to form a plurality of nanostructures from the second semiconductor layers of the fin structure, and forming a gate conductive structure to wrap around the plurality of nanostructures. The gate conductive structure is in contact with the sidewall of the second spacer.
    Type: Application
    Filed: September 3, 2020
    Publication date: December 24, 2020
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: I-Sheng CHEN, Tzu-Chiang CHEN, Cheng-Hsien WU, Ling-Yen YEH, Carlos H. DIAZ
  • Patent number: 10872825
    Abstract: A semiconductor device includes a first plurality of stacked nanowire structures extending in a first direction disposed over a first region of a semiconductor substrate. Each nanowire structure of the first plurality of stacked nanowire structures includes a plurality of nanowires arranged in a second direction substantially perpendicular to the first direction. A nanowire stack insulating layer is between the substrate and a nanowire closest to the substrate of each nanowire structure of the first plurality of stacked nanowire structures. At least one second stacked nanowire structure is disposed over a second region of the semiconductor substrate, and a shallow trench isolation layer is between the first region and the second region of the semiconductor substrate.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: December 22, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Li Chiang, I-Sheng Chen, Tzu-Chiang Chen
  • Patent number: 10868127
    Abstract: Present disclosure provides gate-all-around structure including a first transistor. The first transistor includes a semiconductor substrate having a top surface, a first nanowire over the top surface of the semiconductor substrate and between a first source and a first drain, a first gate structure around the first nanowire, an inner spacer between the first gate structure and the first source and first drain, and an isolation layer between the top surface of the semiconductor substrate and the first source and the first drain. Present disclosure also provides a method for manufacturing the gate-all-around structure described herein.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Cheng, Yu-Lin Yang, I-Sheng Chen, Tzu-Chiang Chen
  • Patent number: 10868114
    Abstract: The structure of a semiconductor device with isolation structures between FET devices and a method of fabricating the semiconductor device are disclosed. A method of fabricating the semiconductor device includes forming a fin structure on a substrate and forming polysilicon gate structures with a first threshold voltage on first fin portions of the fin structure. The method further includes forming doped fin regions with dopants of a first type conductivity on second fin portions of the fin structure, doping at least one of the polysilicon gate structures with dopants of a second type conductivity to adjust the first threshold voltage to a greater second threshold voltage, and replacing at least two of the polysilicon gate structures adjacent to the at least one of the polysilicon gate structures with metal gate structures having a third threshold voltage less than the first and second threshold voltages.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: December 15, 2020
    Inventors: Hung-Li Chiang, Chao-Ching Cheng, Tzu-Chiang Chen, I-Sheng Chen
  • Patent number: 10861750
    Abstract: A method of manufacturing a semiconductor device includes forming a plurality of fin structures extending in a first direction over a semiconductor substrate. Each fin structure includes a first region proximate to the semiconductor substrate and a second region distal to the semiconductor substrate. An electrically conductive layer is formed between the first regions of a first adjacent pair of fin structures. A gate electrode structure is formed extending in a second direction substantially perpendicular to the first direction over the fin structure second region, and a metallization layer including at least one conductive line is formed over the gate electrode structure.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: December 8, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Li Chiang, Chih-Liang Chen, Tzu-Chiang Chen, I-Sheng Chen, Lei-Chun Chou
  • Publication number: 20200357914
    Abstract: A semiconductor device includes a fin field effect transistor (FinFET). The FinFET includes a channel disposed on a fin, a gate disposed over the channel and a source and drain. The channel includes at least two pairs of a first semiconductor layer and a second semiconductor layer formed on the first semiconductor layer. The first semiconductor layer has a different lattice constant than the second semiconductor layer. A thickness of the first semiconductor layer is three to ten times a thickness of the second semiconductor layer at least in one pair.
    Type: Application
    Filed: July 27, 2020
    Publication date: November 12, 2020
    Inventors: Chao-Ching CHENG, Chih Chieh YEH, Cheng-Hsien WU, Hung-Li CHIANG, Jung-Piao CHIU, Tzu-Chiang CHEN, Tsung-Lin LEE, Yu-Lin YANG, I-Sheng CHEN
  • Publication number: 20200343446
    Abstract: Various embodiments of the present disclosure are directed towards a resistive random access memory (RRAM) device including a scavenger layer. A bit line overlying a semiconductor substrate. A data storage layer around outer sidewalls and a top surface of the bit line. A word line overlying the data storage layer. A scavenger layer between the word line and the bit line such that a bottom surface of the scavenger layer is aligned with a bottom surface of the bit line. A lateral thickness of the scavenger layer is less than a vertical thickness of the scavenger layer.
    Type: Application
    Filed: April 25, 2019
    Publication date: October 29, 2020
    Inventors: Hung-Li Chiang, Chao-Ching Cheng, Tzu-Chiang Chen, Yu-Sheng Chen
  • Patent number: 10818777
    Abstract: In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed. A sacrificial gate structure is formed over the fin structure. A source/drain region of the fin structure, which is not covered by the sacrificial gate structure, is etched, thereby forming a source/drain space. The first semiconductor layers are laterally etched through the source/drain space. An inner spacer made of a dielectric material is formed on an end of each of the etched first semiconductor layers. A source/drain epitaxial layer is formed in the source/drain space to cover the inner spacer. A lateral end of each of the first semiconductor layers has a V-shape cross section after the first semiconductor layers are laterally etched.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: October 27, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Chiang, Chen-Feng Hsu, Chao-Ching Cheng, Tzu-Chiang Chen, Tung Ying Lee, Wei-Sheng Yun, Yu-Lin Yang
  • Publication number: 20200335400
    Abstract: In a method, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed. A sacrificial gate structure is formed over the fin structure. The first semiconductor layers are etched at a source/drain region of the fin structure, which is not covered by the sacrificial gate structure, thereby forming a first source/drain space in which the second semiconductor layers are exposed. A dielectric layer is formed at the first source/drain space, thereby covering the exposed second semiconductor layers. The dielectric layer and part of the second semiconductor layers are etched, thereby forming a second source/drain space. A source/drain epitaxial layer is formed in the second source/drain space. At least one of the second semiconductor layers is in contact with the source/drain epitaxial layer, and at least one of the second semiconductor layers is separated from the source/drain epitaxial layer.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 22, 2020
    Inventors: Hung-Li CHIANG, Chao-Ching CHENG, Chih-Liang CHEN, Tzu-Chiang CHEN, Ta-Pen GUO, Yu-Lin YANG, I-Sheng CHEN, Szu-Wei HUANG
  • Patent number: 10811518
    Abstract: In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed. A sacrificial gate structure is formed over the fin structure. A source/drain region of the fin structure, which is not covered by the sacrificial gate structure, is etched, thereby forming a source/drain space. The first semiconductor layers are laterally etched through the source/drain space. An inner spacer made of a dielectric material is formed on an end of each of the etched first semiconductor layers. A source/drain epitaxial layer is formed in the source/drain space to cover the inner spacer. A lateral end of each of the first semiconductor layers has a V-shape cross section after the first semiconductor layers are laterally etched.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: October 20, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Cheng, Chen-Feng Hsu, Tzu-Chiang Chen, Tung Ying Lee, Wei-Sheng Yun, Yu-Lin Yang
  • Patent number: 10804367
    Abstract: A semiconductor device includes a substrate; an I/O device over the substrate; and a core device over the substrate. The I/O device includes a first gate structure having an interfacial layer; a first high-k dielectric stack over the interfacial layer; and a conductive layer over and in physical contact with the first high-k dielectric stack. The core device includes a second gate structure having the interfacial layer; a second high-k dielectric stack over the interfacial layer; and the conductive layer over and in physical contact with the second high-k dielectric stack. The first high-k dielectric stack includes the second high-k dielectric stack and a third dielectric layer.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: October 13, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Cheng, Wei-Sheng Yun, I-Sheng Chen, Shao-Ming Yu, Tzu-Chiang Chen, Chih Chieh Yeh
  • Patent number: 10797174
    Abstract: A semiconductor device includes a plurality of fins on a substrate. A fin liner is formed on an end surface of each of the plurality of fins. An insulating layer is formed on the plurality of fins. A plurality of polycrystalline silicon layers are formed on the insulating layer. A source/drain epitaxial layer is formed in a source/drain space in each of the plurality of fins. One of the polycrystalline silicon layers is formed on a region spaced-apart from the fins.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: October 6, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kai-Tai Chang, Tung Ying Lee, Wei-Sheng Yun, Tzu-Chung Wang, Chia-Cheng Ho, Ming-Shiang Lin, Tzu-Chiang Chen
  • Patent number: 10770592
    Abstract: A method for forming a multi-gate semiconductor device includes providing a substrate including at least a fin structure and a dummy gate structure over the fin structure and the substrate, disposing a conductive spacer over sidewalls of the dummy gate structure, portions of the fin structure are exposed from the dummy gate structure and the conductive spacer, forming a source/drain region in the portions of the fin structures exposed from the dummy gate structure and the conductive spacer, disposing a dielectric structure over the substrate, removing the dummy gate structure to form a gate trench in the dielectric structure, the conductive spacer is exposed from sidewalls of the gate trench, disposing at least a gate dielectric layer over a bottom of the gate trench, and disposing a gate conductive structure in the gate trench, sidewalls of the gate conductive structure are in contact with the conductive spacer.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: September 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: I-Sheng Chen, Tzu-Chiang Chen, Cheng-Hsien Wu, Ling-Yen Yeh, Carlos H. Diaz
  • Patent number: 10756089
    Abstract: Present disclosure provides a hybrid semiconductor transistor structure, including a substrate, a first transistor on the substrate, a channel of the first transistor including a fin and having a first channel height, a second transistor adjacent to the first transistor, a channel of the second transistor including a nanowire, and a separation laterally spacing the fin from the nanowire. The first channel height is greater than the separation. Present disclosure also provides a method for manufacturing the hybrid semiconductor transistor structure.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: August 25, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Li Chiang, I-Sheng Chen, Tzu-Chiang Chen
  • Publication number: 20200266271
    Abstract: Methods for forming semiconductor structures are provided. The method includes alternately stacking first semiconductor layers and second semiconductor layers over a substrate and patterning the first semiconductor layers and the second semiconductor layers to form a first fin structure. The method further includes forming a first trench in the first fin structure and forming a first source/drain structure in the first trench. The method further includes partially removing the first source/drain structure to form a second trench in the first source/drain structure and forming a first contact in the second trench.
    Type: Application
    Filed: May 7, 2020
    Publication date: August 20, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ta-Chun LIN, Kuo-Hua PAN, Jhon-Jhy LIAW, Chao-Ching CHENG, Hung-Li CHIANG, Shih-Syuan HUANG, Tzu-Chiang CHEN, I-Sheng CHEN, Sai-Hooi YEONG
  • Publication number: 20200251555
    Abstract: In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed. A sacrificial gate structure is formed over the fin structure. The first semiconductor layers, the second semiconductor layer and an upper portion of the fin structure at a source/drain region of the fin structure, which is not covered by the sacrificial gate structure, are etched. A dielectric layer is formed over the etched upper portion of the fin structure. A source/drain epitaxial layer is formed. The source/drain epitaxial layer is connected to ends of the second semiconductor wires, and a bottom of the source/drain epitaxial layer is separated from the fin structure by the dielectric layer.
    Type: Application
    Filed: April 20, 2020
    Publication date: August 6, 2020
    Inventors: Yu-Lin YANG, Chao-Ching CHENG, Tzu-Chiang CHEN, I-Sheng CHEN
  • Patent number: 10727344
    Abstract: A semiconductor device includes a fin field effect transistor (FinFET). The FinFET includes a channel disposed on a fin, a gate disposed over the channel and a source and drain. The channel includes at least two pairs of a first semiconductor layer and a second semiconductor layer formed on the first semiconductor layer. The first semiconductor layer has a different lattice constant than the second semiconductor layer. A thickness of the first semiconductor layer is three to ten times a thickness of the second semiconductor layer at least in one pair.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: July 28, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Cheng, Chih Chieh Yeh, Cheng-Hsien Wu, Hung-Li Chiang, Jung-Piao Chiu, Tzu-Chiang Chen, Tsung-Lin Lee, Yu-Lin Yang, I-Sheng Chen
  • Publication number: 20200227570
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes an isolation layer formed over a substrate, and a plurality of nanostructures formed over the isolation layer. The semiconductor device structure includes a gate structure wrapped around the nanostructures, and an S/D structure wrapped around the nanostructures. The semiconductor device structure includes a first oxide layer between the substrate and the S/D structure. The first oxide layer and the isolation layer are made of different materials. The first oxide layer is in direct contact with the isolation layer.
    Type: Application
    Filed: April 1, 2020
    Publication date: July 16, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hou-Yu CHEN, Chao-Ching CHENG, Tzu-Chiang CHEN, Yu-Lin YANG, I-Sheng CHEN
  • Publication number: 20200227534
    Abstract: In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed. A sacrificial gate structure is formed over the fin structure. A source/drain region of the fin structure, which is not covered by the sacrificial gate structure, is etched, thereby forming a source/drain space. The first semiconductor layers are laterally etched through the source/drain space. An inner spacer made of a dielectric material is formed on an end of each of the etched first semiconductor layers. A source/drain epitaxial layer is formed in the source/drain space to cover the inner spacer. A lateral end of each of the first semiconductor layers has a V-shape cross section after the first semiconductor layers are laterally etched.
    Type: Application
    Filed: April 1, 2020
    Publication date: July 16, 2020
    Inventors: Kuo-Cheng CHIANG, Chen-Feng HSU, Chao-Ching CHENG, Tzu-Chiang CHEN, Tung Ying LEE, Wei-Sheng YUN, Yu-Lin YANG