Patents by Inventor Tzu-Yu Chen

Tzu-Yu Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11785777
    Abstract: In some embodiments, the present disclosure relates to a method of forming an integrated chip including forming a ferroelectric layer over a bottom electrode layer, forming a top electrode layer over the ferroelectric layer, performing a first removal process to remove peripheral portions of the bottom electrode layer, the ferroelectric layer, and the top electrode layer, and performing a second removal process using a second etch that is selective to the bottom electrode layer and the top electrode layer to remove portions of the bottom electrode layer and the top electrode layer, so that after the second removal process the ferroelectric layer has a surface that protrudes past a surface of the bottom electrode layer and the top electrode layer.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: October 10, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hsiang Chang, Kuo-Chi Tu, Sheng-Hung Shih, Wen-Ting Chu, Tzu-Yu Chen, Fu-Chen Chang
  • Publication number: 20230309318
    Abstract: A semiconductor device includes a bottom electrode, a top electrode, a sidewall spacer, and a data storage element. The sidewall spacer is disposed aside the top electrode. The data storage element is located between the bottom electrode and the top electrode, and includes a ferroelectric material. The data storage element has a peripheral region which is disposed beneath the sidewall spacer and which has at least 60% of ferroelectric phase. A method for manufacturing the semiconductor device and a method for transforming a non-ferroelectric phase of a ferroelectric material to a ferroelectric phase are also disclosed.
    Type: Application
    Filed: May 26, 2023
    Publication date: September 28, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Yu CHEN, Sheng-Hung SHIH, Fu-Chen CHANG, Kuo-Chi TU, Wen-Ting CHU
  • Patent number: 11751401
    Abstract: A semiconductor device includes a semiconductor substrate, a memory gate, and a data storage element. The semiconductor substrate includes a memory well which has two source/drain regions and a channel region between the source/drain regions. The memory gate is disposed above the channel region. The data storage element includes a ferroelectric material, and is disposed around the memory gate to separate the memory gate from the channel region.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: September 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Yu Chen, Sheng-Hung Shih, Kuo-Chi Tu
  • Patent number: 11751406
    Abstract: An RRAM cell stack is formed over an opening in a dielectric layer. The dielectric layer is sufficiently thick and the opening is sufficiently deep that an RRAM cell can be formed by a planarization process. The resulting RRAM cells may have a U-shaped profile. The RRAM cell area includes contributions from a bottom portion in which the RRAM cell layers are stacked parallel to the substrate and a side portion in which RRAM cell layers are stacked roughly perpendicular to the substrate. The combined side and bottom portions of the curved RRAM cell provide an increased area in comparison to a planar cell stack. The increased area lowers forming and set voltages for the RRAM cell.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: September 5, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Te-Hsien Hsieh, Tzu-Yu Chen, Kuo-Chi Tu, Yuan-Tai Tseng
  • Publication number: 20230262991
    Abstract: The present disclosure relates to an integrated chip including a first ferroelectric layer over a substrate. A first electrode layer is over the substrate and on a first side of the first ferroelectric layer. A second electrode layer is over the substrate and on a second side of the first ferroelectric layer, opposite the first side. A first barrier layer is between the first ferroelectric layer and the first electrode layer. A bandgap energy of the first barrier layer is greater than a bandgap energy of the first ferroelectric layer.
    Type: Application
    Filed: February 15, 2022
    Publication date: August 17, 2023
    Inventors: Fu-Chen Chang, Tzu-Yu Chen, Sheng-Hung Shih, Kuo-Chi Tu, Wen-Ting Chu
  • Patent number: 11723213
    Abstract: Some embodiments relate to a ferroelectric random access memory (FeRAM) device. The FeRAM device includes a bottom electrode structure and a top electrode overlying the ferroelectric structure. The top electrode has a first width as measured between outermost sidewalls of the top electrode. A ferroelectric structure separates the bottom electrode structure from the top electrode. The ferroelectric structure has a second width as measured between outermost sidewalls of the ferroelectric structure. The second width is greater than the first width such that the ferroelectric structure includes a ledge that reflects a difference between the first width and the second width. A dielectric sidewall spacer structure is disposed on the ledge and covers the outermost sidewalls of the top electrode.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: August 8, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Sheng-Hung Shih, Fu-Chen Chang
  • Publication number: 20230234187
    Abstract: A pliers includes a first pliers body and a second pliers body. The first pliers body includes an upper jaw section, a middle section and a first handle. The second pliers body includes a lower jaw section, a pivotally connected portion and a second handle. A groove including a front arc section close to the upper jaw section and a rear arc section close to the first handle is disposed on the middle section. Centers of curvature corresponding to the front arc section and the rear arc section are located on different sides of the groove. An adjustable button passing through the groove and connected with the first pliers body is disposed on the pivotally connected portion. A clip mouth is defined between the upper jaw section and the lower jaw section. A width of the clip mouth is changeable with a movement of the adjustable button.
    Type: Application
    Filed: January 26, 2022
    Publication date: July 27, 2023
    Inventor: Tzu Yu Chen
  • Patent number: 11706930
    Abstract: A semiconductor device includes a bottom electrode, a top electrode, a sidewall spacer, and a data storage element. The sidewall spacer is disposed aside the top electrode. The data storage element is located between the bottom electrode and the top electrode, and includes a ferroelectric material. The data storage element has a peripheral region which is disposed beneath the sidewall spacer and which has at least 60% of ferroelectric phase. A method for manufacturing the semiconductor device and a method for transforming a non-ferroelectric phase of a ferroelectric material to a ferroelectric phase are also disclosed.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: July 18, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Yu Chen, Sheng-Hung Shih, Fu-Chen Chang, Kuo-Chi Tu, Wen-Ting Chu
  • Publication number: 20230157030
    Abstract: An integrated chip includes a memory cell within a BEOL metal interconnect. The memory cell may be an FeRAM memory cell. The memory cell is formed over a plurality of openings in a dielectric structure that includes an inter-level dielectric layer. The openings may be form an array or another two-dimensional pattern. The layers of the memory cell line the openings whereby each of a lower electrode layer, a data storage layer, and an upper electrode descend into the openings. The lower electrode layer may pass through an etch stop layer and contact a lower interconnect. There may be a plurality of top electrode vias. The top electrode vias may be offset from the opening. This memory cell structure provides a large area, which leads to low threshold voltages.
    Type: Application
    Filed: February 15, 2022
    Publication date: May 18, 2023
    Inventors: Tzu-Yu Chen, Sheng-Hung Shih, Kuo-Chi Tu
  • Publication number: 20230065132
    Abstract: A method for fabricating a semiconductor device is provided. The method includes depositing a ferroelectric layer over the substrate; performing a first ionized physical deposition process to deposit a top electrode layer over the ferroelectric layer; patterning the top electrode layer into a top electrode; and patterning the ferroelectric layer to into a ferroelectric element below the top electrode.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Yu CHEN, Hsin-Yu LAI, Sheng-Hung SHIH, Fu-Chen CHANG, Kuo-Chi TU
  • Publication number: 20230017020
    Abstract: Various embodiments of the present disclosure are directed towards a memory cell in which an interfacial layer is on a bottom of a ferroelectric layer, between a bottom electrode and a ferroelectric layer. The interfacial layer is a different material than the bottom electrode and the ferroelectric layer and has a top surface with high texture uniformity compared to a top surface of the bottom electrode. The interfacial layer may, for example, be a dielectric, metal oxide, or metal that is: (1) amorphous; (2) monocrystalline; (3) crystalline with low grain size variation; (4) crystalline with a high percentage of grains sharing a common orientation; (5) crystalline with a high percentage of grains having a small grain size; or 6) any combination of the foregoing. It has been appreciated that such materials lead to high texture uniformity at the top surface of the interfacial layer.
    Type: Application
    Filed: January 11, 2022
    Publication date: January 19, 2023
    Inventors: Tzu-Yu Chen, Sheng-Hung Shih, Fu-Chen Chang, Kuo-Chi Tu
  • Patent number: 11557609
    Abstract: A structure includes a semiconductor substrate, a gate structure, a source/drain feature, a source/drain contact, a dielectric layer, and a ferroelectric random access memory (FERAM) structure. The gate structure is on the semiconductor substrate. The source/drain feature is adjacent to the gate structure. The source/drain contact lands on the source/drain feature. The dielectric layer spans the source/drain contact. The FeRAM structure is partially embedded in the dielectric layer and includes a bottom electrode layer on the source/drain contact and having an U-shaped cross section, a ferroelectric layer conformally formed on the bottom electrode layer, and a top electrode layer over the ferroelectric layer.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: January 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Yu Chen, Sheng-Hung Shih, Fu-Chen Chang, Kuo-Chi Tu
  • Publication number: 20230011895
    Abstract: A method for efficiently waking up ferroelectric memory is provided. A wafer is formed with a plurality of first signal lines, a plurality of second signal lines, a plurality of third signal lines, and a plurality of ferroelectric memory cells that constitute a ferroelectric memory array. Each of the ferroelectric memory cells is electrically connected to one of the first signal lines, one of the second signal lines and one of the third signal lines. Voltage signals are simultaneously applied to the first signal lines, the second signal lines and the third signal lines to induce occurrence of a wake-up effect in the ferroelectric memory cells.
    Type: Application
    Filed: July 8, 2021
    Publication date: January 12, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Yu CHEN, Sheng-Hung SHIH, Fu-Chen CHANG, Kuo-Chi TU, Wen-Ting CHU
  • Publication number: 20220384464
    Abstract: A semiconductor device includes a bottom electrode, a top electrode, a sidewall spacer, and a data storage element. The sidewall spacer is disposed aside the top electrode. The data storage element is located between the bottom electrode and the top electrode, and includes a ferroelectric material. The data storage element has a peripheral region which is disposed beneath the sidewall spacer and which has at least 60% of ferroelectric phase. A method for manufacturing the semiconductor device and a method for transforming a non-ferroelectric phase of a ferroelectric material to a ferroelectric phase are also disclosed.
    Type: Application
    Filed: May 27, 2021
    Publication date: December 1, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Yu CHEN, Sheng-Hung SHIH, Fu-Chen CHANG, Kuo-Chi TU, Wen-Ting CHU
  • Publication number: 20220384458
    Abstract: A semiconductor device includes a semiconductor substrate, a memory gate, and a data storage element. The semiconductor substrate includes a memory well which has two source/drain regions and a channel region between the source/drain regions. The memory gate is disposed above the channel region. The data storage element includes a ferroelectric material, and is disposed around the memory gate to separate the memory gate from the channel region.
    Type: Application
    Filed: May 27, 2021
    Publication date: December 1, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Yu CHEN, Sheng-Hung SHIH, Kuo-Chi TU
  • Publication number: 20220351769
    Abstract: The present disclosure relates to an integrated chip structure. The integrated chip structure includes a first source/drain region and a second source/drain region disposed within a substrate. A select gate is disposed over the substrate between the first source/drain region and the second source/drain region. A ferroelectric random-access memory (FeRAM) device is disposed over the substrate between the select gate and the first source/drain region. A first sidewall spacer, including one or more dielectric materials, is arranged laterally between the select gate and the FeRAM device. An inter-level dielectric (ILD) structure laterally surrounds the FeRAM device and the select gate and vertically overlies a top surface of the first sidewall spacer.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Wen-Ting Chu, Yong-Shiuan Tsair
  • Publication number: 20220285373
    Abstract: A structure includes a semiconductor substrate, a gate structure, a source/drain feature, a source/drain contact, a dielectric layer, and a ferroelectric random access memory (FERAM) structure. The gate structure is on the semiconductor substrate. The source/drain feature is adjacent to the gate structure. The source/drain contact lands on the source/drain feature. The dielectric layer spans the source/drain contact. The FeRAM structure is partially embedded in the dielectric layer and includes a bottom electrode layer on the source/drain contact and having an U-shaped cross section, a ferroelectric layer conformally formed on the bottom electrode layer, and a top electrode layer over the ferroelectric layer.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 8, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Yu CHEN, Sheng-Hung SHIH, Fu-Chen CHANG, Kuo-Chi TU
  • Publication number: 20220285376
    Abstract: A method for fabricating a semiconductor device is provided. The method includes depositing a bottom electrode layer over a substrate; depositing a ferroelectric layer over the bottom electrode layer; depositing a first top electrode layer over the ferroelectric layer, wherein the first top electrode layer comprises a first metal; depositing a second top electrode layer over the first top electrode layer, wherein the second top electrode layer comprises a second metal, and a standard reduction potential of the first metal is greater than a standard reduction potential of the second metal; and removing portions of the second top electrode layer, the first top electrode layer, the ferroelectric layer, and the bottom electrode layer to form a memory stack, the memory stack comprising remaining portions of the second top electrode layer, the first top electrode layer, the ferroelectric layer, and the bottom electrode layer.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 8, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Yu CHEN, Sheng-Hung SHIH, Fu-Chen CHANG, Kuo-Chi TU, Wen-Ting CHU, Alexander KALNITSKY
  • Patent number: 11437084
    Abstract: The present disclosure relates to a method of forming a memory structure. The method includes depositing a ferroelectric random access memory (FeRAM) stack over a substrate. The FeRAM stack has a ferroelectric layer and one or more conductive layers over the ferroelectric layer. The FeRAM stack is patterned to define an FeRAM device stack. A sidewall spacer is formed along a first side of the FeRAM device stack, and a select gate is formed along a side of the sidewall spacer that faces away from the FeRAM device stack. A source region is formed within the substrate and along a second side of the FeRAM device stack, and a drain region is formed within the substrate. The drain region is separated from the FeRAM device stack by the select gate.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: September 6, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Wen-Ting Chu, Yong-Shiuan Tsair
  • Publication number: 20220231034
    Abstract: In an embodiment, a structure includes one or more first transistors in a first region of a device, the one or more first transistors supporting a memory access function of the device. The structure includes one or more ferroelectric random access memory (FeRAM) capacitors in a first inter-metal dielectric (IMD) layer over the one or more first transistors in the first region. The structure also includes one or more metal-ferroelectric insulator-metal (MFM) decoupling capacitors in the first IMD layer in a second region of the device. The MFM capacitors may include two or more capacitors coupled in series to act as a voltage divider.
    Type: Application
    Filed: April 4, 2022
    Publication date: July 21, 2022
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Fu-Chen Chang, Chih-Hsiang Chang, Sheng-Hung Shih