Patents by Inventor Tzu-Yu Chen

Tzu-Yu Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210181343
    Abstract: A tracking device including an image sensor, a light source and a processor is provided. The image sensor senses reflected light or scattered light formed by the light source illuminating a work surface. The processor calculates a trace of the tracking device according to one of the reflected light and the scattered light that generates more apparent image features so as to increase the adaptable work surfaces.
    Type: Application
    Filed: February 25, 2021
    Publication date: June 17, 2021
    Inventors: HUI-HSUAN CHEN, CHENG-LIN YANG, TZU-YU CHEN
  • Patent number: 11037941
    Abstract: A method for forming an integrated circuit (IC) and an IC are disclosed. The method for forming the IC includes: forming an isolation structure separating a memory semiconductor region from a logic semiconductor region; forming a memory cell structure on the memory semiconductor region; forming a memory capping layer covering the memory cell structure and the logic semiconductor region; performing a first etch into the memory capping layer to remove the memory capping layer from the logic semiconductor region, and to define a slanted, logic-facing sidewall on the isolation structure; forming a logic device structure on the logic semiconductor region; and performing a second etch into the memory capping layer to remove the memory capping layer from the memory semiconductor, while leaving a dummy segment of the memory capping layer that defines the logic-facing sidewall.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: June 15, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Wen-Ting Chu, Yong-Shiuan Tsair
  • Publication number: 20210174856
    Abstract: The present disclosure relates to a method of forming a memory structure. The method includes depositing a ferroelectric random access memory (FeRAM) stack over a substrate. The FeRAM stack has a ferroelectric layer and one or more conductive layers over the ferroelectric layer. The FeRAM stack is patterned to define an FeRAM device stack. A sidewall spacer is formed along a first side of the FeRAM device stack, and a select gate is formed along a side of the sidewall spacer that faces away from the FeRAM device stack. A source region is formed within the substrate and along a second side of the FeRAM device stack, and a drain region is formed within the substrate. The drain region is separated from the FeRAM device stack by the select gate.
    Type: Application
    Filed: February 17, 2021
    Publication date: June 10, 2021
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Wen-Ting Chu, Yong-Shiuan Tsair
  • Patent number: 10962646
    Abstract: A tracking device including an image sensor, a light source and a processor is provided. The image sensor senses reflected light or scattered light formed by the light source illuminating a work surface. The processor calculates a trace of the tracking device according to one of the reflected light and the scattered light that generates more apparent image features so as to increase the adaptable work surfaces.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: March 30, 2021
    Assignee: PIXART IMAGING INC.
    Inventors: Hui-Hsuan Chen, Cheng-Lin Yang, Tzu-Yu Chen
  • Publication number: 20210082928
    Abstract: A semiconductor device includes a lower intermetal dielectric (IMD) layer, a middle conductive line, and a ferroelectric random access memory (FRAM) structure. The middle conductive line is embedded in the lower IMD layer. The FRAM structure is over the lower IMD layer and the middle conductive line. The FRAM structure includes a bottom electrode, a ferroelectric layer, and a top electrode. The bottom electrode is over the middle conductive line and in contact with the lower IMD layer. The ferroelectric layer is over the bottom electrode. The top electrode is over the ferroelectric layer.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 18, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tzu-Yu CHEN, Sheng-Hung SHIH, Kuo-Chi TU, Wen-Ting CHU
  • Patent number: 10930333
    Abstract: In some embodiments, the present disclosure relates to a memory structure. The memory structure has a source region and a drain region disposed within a substrate. A select gate disposed over the substrate between the source region and the drain region. A ferroelectric random access memory (FeRAM) device is disposed over the substrate between the select gate and the source region. The FeRAM device includes a ferroelectric material arranged between the substrate and a conductive electrode.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: February 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Wen-Ting Chu, Yong-Shiuan Tsair
  • Publication number: 20210036057
    Abstract: An RRAM cell stack is formed over an opening in a dielectric layer. The dielectric layer is sufficiently thick and the opening is sufficiently deep that an RRAM cell can be formed by a planarization process. The resulting RRAM cells may have a U-shaped profile. The RRAM cell area includes contributions from a bottom portion in which the RRAM cell layers are stacked parallel to the substrate and a side portion in which RRAM cell layers are stacked roughly perpendicular to the substrate. The combined side and bottom portions of the curved RRAM cell provide an increased area in comparison to a planar cell stack. The increased area lowers forming and set voltages for the RRAM cell.
    Type: Application
    Filed: September 19, 2019
    Publication date: February 4, 2021
    Inventors: Te-Hsien Hsieh, Tzu-Yu Chen, Kuo-Chi Tu, Yuan-Tai Tseng
  • Publication number: 20210035993
    Abstract: In an embodiment, a structure includes one or more first transistors in a first region of a device, the one or more first transistors supporting a memory access function of the device. The structure includes one or more ferroelectric random access memory (FeRAM) capacitors in a first inter-metal dielectric (IMD) layer over the one or more first transistors in the first region. The structure also includes one or more metal-ferroelectric insulator-metal (MFM) decoupling capacitors in the first IMD layer in a second region of the device. The MFM capacitors may include two or more capacitors coupled in series to act as a voltage divider.
    Type: Application
    Filed: February 3, 2020
    Publication date: February 4, 2021
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Fu-Chen Chang, Chih-Hsiang Chang, Sheng-Hung Shih
  • Publication number: 20210035992
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a plurality of lower interconnect layers disposed within a lower dielectric structure over a substrate. A lower insulating structure is over the lower dielectric structure and has sidewalls extending through the lower insulating structure. A bottom electrode is arranged along the sidewalls and an upper surface of the lower insulating structure. The upper surface of the lower insulating structure extends past outermost sidewalls of the bottom electrode. A data storage structure is disposed on the bottom electrode and is configured to store a data state. A top electrode is disposed on the data storage structure. The bottom electrode has interior sidewalls coupled to a horizontally extending surface to define a recess within an upper surface of the bottom electrode. The horizontally extending surface is below the upper surface of the lower insulating structure.
    Type: Application
    Filed: October 25, 2019
    Publication date: February 4, 2021
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Sheng-Hung Shih, Wen-Ting Chu, Chih-Hsiang Chang, Fu-Chen Chang
  • Publication number: 20200343265
    Abstract: In some embodiments, the present disclosure relates to an integrated chip including one or more lower interconnect layers arranged within one or more stacked inter-layer dielectric layers over a substrate. A bottom electrode is disposed over the one or more interconnect layers, and a top electrode is disposed over the bottom electrode. A ferroelectric layer is disposed between and contacts a first surface of the bottom electrode and a second surface of the top electrode. The ferroelectric layer includes a protrusion that extends past outer surfaces of the top electrode and the bottom electrode along a first direction that is perpendicular to a second direction that is normal to the first surface. The protrusion is confined between lines that extend along the first and second surface.
    Type: Application
    Filed: April 25, 2019
    Publication date: October 29, 2020
    Inventors: Chih-Hsiang Chang, Kuo-Chi Tu, Sheng-Hung Shih, Wen-Ting Chu, Tzu-Yu Chen, Fu-Chen Chang
  • Patent number: 10763270
    Abstract: A method for forming an integrated circuit (IC) and an IC are disclosed. The method for forming the IC includes: forming an isolation structure separating a memory semiconductor region from a logic semiconductor region; forming a memory cell structure on the memory semiconductor region; forming a memory capping layer covering the memory cell structure and the logic semiconductor region; performing a first etch into the memory capping layer to remove the memory capping layer from the logic semiconductor region, and to define a slanted, logic-facing sidewall on the isolation structure; forming a logic device structure on the logic semiconductor region; and performing a second etch into the memory capping layer to remove the memory capping layer from the memory semiconductor, while leaving a dummy segment of the memory capping layer that defines the logic-facing sidewall.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: September 1, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Wen-Ting Chu, Yong-Shiuan Tsair
  • Publication number: 20200191966
    Abstract: A tracking device including an image sensor, a light source and a processor is provided. The image sensor senses reflected light or scattered light formed by the light source illuminating a work surface. The processor calculates a trace of the tracking device according to one of the reflected light and the scattered light that generates more apparent image features so as to increase the adaptable work surfaces.
    Type: Application
    Filed: February 25, 2020
    Publication date: June 18, 2020
    Inventors: HUI-HSUAN CHEN, CHENG-LIN YANG, TZU-YU CHEN
  • Patent number: 10627518
    Abstract: A tracking device including an image sensor, a light source and a processor is provided. The image sensor senses reflected light or scattered light formed by the light source illuminating a work surface. The processor calculates a trace of the tracking device according to one of the reflected light and the scattered light that generates more apparent image features so as to increase the adaptable work surfaces.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: April 21, 2020
    Assignee: PIXART IMAGING INC
    Inventors: Hui-Hsuan Chen, Cheng-Lin Yang, Tzu-Yu Chen
  • Publication number: 20200105772
    Abstract: Some embodiments relate to a ferroelectric random access memory (FeRAM) device. The FeRAM device includes a bottom electrode structure and a top electrode overlying the ferroelectric structure. The top electrode has a first width as measured between outermost sidewalls of the top electrode. A ferroelectric structure separates the bottom electrode structure from the top electrode. The ferroelectric structure has a second width as measured between outermost sidewalls of the ferroelectric structure. The second width is greater than the first width such that the ferroelectric structure includes a ledge that reflects a difference between the first width and the second width. A dielectric sidewall spacer structure is disposed on the ledge and covers the outermost sidewalls of the top electrode.
    Type: Application
    Filed: June 26, 2019
    Publication date: April 2, 2020
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Sheng-Hung Shih, Wen-Ting Chu, Yong-Shiuan Tsair
  • Publication number: 20200075075
    Abstract: In some embodiments, the present disclosure relates to a memory structure. The memory structure has a source region and a drain region disposed within a substrate. A select gate disposed over the substrate between the source region and the drain region. A ferroelectric random access memory (FeRAM) device is disposed over the substrate between the select gate and the source region. The FeRAM device includes a ferroelectric material arranged between the substrate and a conductive electrode.
    Type: Application
    Filed: February 5, 2019
    Publication date: March 5, 2020
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Wen-Ting Chu, Yong-Shiuan Tsair
  • Publication number: 20200006360
    Abstract: A method for forming an integrated circuit (IC) and an IC are disclosed. The method for forming the IC includes: forming an isolation structure separating a memory semiconductor region from a logic semiconductor region; forming a memory cell structure on the memory semiconductor region; forming a memory capping layer covering the memory cell structure and the logic semiconductor region; performing a first etch into the memory capping layer to remove the memory capping layer from the logic semiconductor region, and to define a slanted, logic-facing sidewall on the isolation structure; forming a logic device structure on the logic semiconductor region; and performing a second etch into the memory capping layer to remove the memory capping layer from the memory semiconductor, while leaving a dummy segment of the memory capping layer that defines the logic-facing sidewall.
    Type: Application
    Filed: September 3, 2019
    Publication date: January 2, 2020
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Wen-Ting Chu, Yong-Shiuan Tsair
  • Publication number: 20190333920
    Abstract: Various embodiments of the present application are directed to a method for forming a boundary structure separating a memory cell and a logic device. In some embodiments, an isolation structure is formed separating a memory semiconductor region from a logic semiconductor region. A memory cell structure is formed on the memory semiconductor region, and a memory capping layer is formed covering the memory cell structure and the logic semiconductor region. A first etch is performed into the memory capping layer to remove the memory capping layer from the logic semiconductor region, and to define a slanted, logic-facing sidewall on the isolation structure. A logic device structure is formed on the logic semiconductor region. Further, a second etch is performed into the memory capping layer to remove the memory capping layer from the memory semiconductor, while leaving a dummy segment of the memory capping layer that defines the logic-facing sidewall.
    Type: Application
    Filed: April 27, 2018
    Publication date: October 31, 2019
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Wen-Ting Chu, Yong-Shiuan Tsair
  • Publication number: 20180348373
    Abstract: A tracking device including an image sensor, a light source and a processor is provided. The image sensor senses reflected light or scattered light formed by the light source illuminating a work surface. The processor calculates a trace of the tracking device according to one of the reflected light and the scattered light that generates more apparent image features so as to increase the adaptable work surfaces.
    Type: Application
    Filed: December 14, 2017
    Publication date: December 6, 2018
    Inventors: Hui-Hsuan CHEN, Cheng-Lin YANG, Tzu-Yu CHEN
  • Patent number: 10029423
    Abstract: A printing correction method and a 3D printing device are provided, and the printing correction method is adapted to the 3D printing device having a printing platform. The printing correction method is as follows. An electric field is provided to the printing platform. A detection probe is extended towards a position of the printing platform along a first axial direction to enter the electric field, where the position is defined as an initial position. The detection probe is moved from the initial position along a moving path on the printing platform, and when the detection probe is moved along the moving path, an electric field variation is detected to determine a tilt variation of the printing platform relative to the first axial direction. It is determined whether to correct the printing platform according to the tilt variation of the printing platform.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: July 24, 2018
    Assignees: XYZprinting, Inc., Kinpo Electronics, Inc., Cal-Comp Electronics & Communications Company Limited
    Inventors: Chih-Ming Chang, Tzu-Yu Chen
  • Patent number: 9831262
    Abstract: The present disclosure relates to an integrated circuit (IC) that includes a high-k metal gate (HKMG) non-volatile memory (NVM) device and that provides small scale and high performance, and a method of formation. In some embodiments, the integrated circuit includes a memory region having a select transistor and a control transistor laterally spaced apart over a substrate. A select gate electrode and a control gate electrode are disposed over a high-k gate dielectric layer and a memory gate oxide. A logic region is disposed adjacent to the memory region and has a logic device including a metal gate electrode disposed over the high-k gate dielectric layer and a logic gate oxide. The select gate electrode and the control gate electrode can be polysilicon electrodes.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: November 28, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei Cheng Wu, Tzu-Yu Chen