Patents by Inventor Umesh Mishra

Umesh Mishra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8592867
    Abstract: A HEMT comprising a plurality of active semiconductor layers formed on a substrate. Source electrode, drain electrode, and gate are formed in electrical contact with the plurality of active layers. A spacer layer is formed on at least a portion of a surface of said plurality of active layers and covering the gate. A field plate is formed on the spacer layer and electrically connected to the source electrode, wherein the field plate reduces the peak operating electric field in the HEMT.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: November 26, 2013
    Assignee: Cree, Inc.
    Inventors: Yifeng Wu, Primit Parikh, Umesh Mishra, Marcia Moore
  • Patent number: 8575651
    Abstract: Semiconductor device structures and methods of fabricating semiconductor devices structures are provided that include a semi-insulating or insulating GaN epitaxial layer on a conductive semiconductor substrate and/or a conductive layer. The semi-insulating or insulating GaN epitaxial layer has a thickness of at least about 4 ?m. GaN semiconductor device structures and methods of fabricating GaN semiconductor device structures are also provided that include an electrically conductive SiC substrate and an insulating or semi-insulating GaN epitaxial layer on the conductive SiC substrate. The GaN epitaxial layer has a thickness of at least about 4 ?m.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: November 5, 2013
    Assignee: Cree, Inc.
    Inventors: Adam William Saxler, Yifeng Wu, Primit Parikh, Umesh Mishra, Richard Peter Smith, Scott T. Sheppard
  • Publication number: 20130264578
    Abstract: An N-polar III-N transistor includes a III-N buffer layer, a first III-N barrier layer, and a III-N channel layer, the III-N channel layer having a gate region and a plurality of access regions on opposite sides of the gate region. The compositional difference between the first III-N barrier layer and the III-N channel layer causes a conductive channel to be induced in the access regions of the III-N channel layer. The transistor also includes a source, a gate, a drain, and a second III-N barrier layer between the gate and the III-N channel layer. The second III-N barrier layer has an N-face proximal to the gate and a group-III face opposite the N-face, and has a larger bandgap than the III-N channel layer. The lattice constant of the first III-N barrier layer is within 0.5% of the lattice constant of the buffer layer.
    Type: Application
    Filed: April 9, 2013
    Publication date: October 10, 2013
    Applicant: TRANSPHORM INC.
    Inventors: Umesh Mishra, Srabanti Chowdhury, Carl Joseph Neufeld
  • Patent number: 8541818
    Abstract: Planar Schottky diodes for which the semiconductor material includes a heterojunction which induces a 2 DEG in at least one of the semiconductor layers. A metal anode contact is on top of the upper semiconductor layer and forms a Schottky contact with that layer. A metal cathode contact is connected to the 2 DEG, forming an ohmic contact with the layer containing the 2 DEG.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: September 24, 2013
    Assignee: Transphorm Inc.
    Inventors: Yifeng Wu, Umesh Mishra, Primit Parikh, Ilan Ben-Yaacov
  • Patent number: 8519438
    Abstract: A III-N semiconductor device that includes a substrate and a nitride channel layer including a region partly beneath a gate region, and two channel access regions on opposite sides of the part beneath the gate. The channel access regions may be in a different layer from the region beneath the gate. The device includes an AlXN layer adjacent the channel layer wherein X is gallium, indium or their combination, and a preferably n-doped GaN layer adjacent the AlXN layer in the areas adjacent to the channel access regions. The concentration of Al in the AlXN layer, the AlXN layer thickness and the n-doping concentration in the n-doped GaN layer are selected to induce a 2DEG charge in channel access regions without inducing any substantial 2DEG charge beneath the gate, so that the channel is not conductive in the absence of a switching voltage applied to the gate.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: August 27, 2013
    Assignee: Transphorm Inc.
    Inventors: Umesh Mishra, Robert Coffie, Likun Shen, Ilan Ben-Yaacov, Primit Parikh
  • Publication number: 20130175580
    Abstract: Enhancement mode III-nitride devices are described. The 2DEG is depleted in the gate region so that the device is unable to conduct current when no bias is applied at the gate. Both gallium face and nitride face devices formed as enhancement mode devices.
    Type: Application
    Filed: December 21, 2012
    Publication date: July 11, 2013
    Inventors: Chang Soo Suh, Umesh Mishra
  • Publication number: 20130088280
    Abstract: An electronic component includes a depletion-mode transistor, an enhancement-mode transistor, and a resistor. The depletion-mode transistor has a higher breakdown voltage than the enhancement-mode transistor. A first terminal of the resistor is electrically connected to a source of the enhancement-mode transistor, and a second terminal of the resistor and a source of the depletion-mode transistor are each electrically connected to a drain of the enhancement-mode transistor. A gate of the depletion-mode transistor can be electrically connected to a source of the enhancement-mode transistor.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 11, 2013
    Applicant: TRANSPHORM INC.
    Inventors: Rakesh K. Lal, Robert Coffie, Yifeng Wu, Primit Parikh, Yuvaraj Dora, Umesh Mishra, Srabanti Chowdhury, Nicholas Fichtenbaum
  • Publication number: 20130056744
    Abstract: Semiconductor devices with guard rings are described. The semiconductor devices may be, e.g., transistors and diodes designed for high-voltage applications. A guard ring is a floating electrode formed of electrically conducting material above a semiconductor material layer. A portion of an insulating layer is between at least a portion of the guard ring and the semiconductor material layer. A guard ring may be located, for example, on a transistor between a gate and a drain electrode. A semiconductor device may have one or more guard rings.
    Type: Application
    Filed: September 6, 2011
    Publication date: March 7, 2013
    Applicant: TRANSPHORM INC.
    Inventors: Umesh Mishra, Srabanti Chowdhury, Yuvaraj Dora
  • Patent number: 8389977
    Abstract: Group III-nitride devices are described that include a stack of III-nitride layers, passivation layers, and conductive contacts. The stack includes a channel layer with a 2DEG channel, a barrier layer and a spacer layer. One passivation layer directly contacts a surface of the spacer layer on a side opposite to the channel layer and is an electrical insulator. The stack of III-nitride layers and the first passivation layer form a structure with a reverse side proximate to the first passivation layer and an obverse side proximate to the barrier layer. Another passivation layer is on the obverse side of the structure. Defected nucleation and stress management layers that form a buffer layer during the formation process can be partially or entirely removed.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: March 5, 2013
    Assignee: Transphorm Inc.
    Inventors: Rongming Chu, Umesh Mishra, Rakesh K. Lal
  • Patent number: 8344424
    Abstract: Enhancement mode III-nitride devices are described. The 2DEG is depleted in the gate region so that the device is unable to conduct current when no bias is applied at the gate. Both gallium face and nitride face devices formed as enhancement mode devices.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: January 1, 2013
    Assignee: Transphorm Inc.
    Inventors: Chang Soo Suh, Umesh Mishra
  • Publication number: 20120314371
    Abstract: A circuit substrate has one or more active components and a plurality of passive circuit elements on a first surface. An active semiconductor device has a substrate with layers of material and a plurality of terminals. The active semiconductor device is flip-chip mounted on the circuit substrate and at least one of the terminals of the device is electrically connected to an active component on the circuit substrate. The active components on the substrate and the flip-chip mounted active semiconductor device, in combination with passive circuit elements, form preamplifiers and an output amplifier respectively. In a power switching configuration, the circuit substrate has logic control circuits on a first surface. A semiconductor transistor flip-chip mounted on the circuit substrate is electrically connected to the control circuits on the first surface to thereby control the on and off switching of the flip-chip mounted device.
    Type: Application
    Filed: August 21, 2012
    Publication date: December 13, 2012
    Inventors: UMESH MISHRA, Primit Parikh, Yifeng Wu
  • Publication number: 20120267640
    Abstract: Planar Schottky diodes for which the semiconductor material includes a heterojunction which induces a 2DEG in at least one of the semiconductor layers. A metal anode contact is on top of the upper semiconductor layer and forms a Schottky contact with that layer. A metal cathode contact is connected to the 2DEG, forming an ohmic contact with the layer containing the 2DEG.
    Type: Application
    Filed: June 26, 2012
    Publication date: October 25, 2012
    Applicant: TRANSPHORM INC.
    Inventors: Yifeng Wu, Umesh Mishra, Primit Parikh, Ilan Ben-Yaacov
  • Patent number: 8274159
    Abstract: A circuit substrate has one or more active components and a plurality of passive circuit elements on a first surface. An active semiconductor device has a substrate with layers of material and a plurality of terminals. The active semiconductor device is flip-chip mounted on the circuit substrate and at least one of the terminals of the device is electrically connected to an active component on the circuit substrate. The active components on the substrate and the flip-chip mounted active semiconductor device, in combination with passive circuit elements, form preamplifiers and an output amplifier respectively. In a power switching configuration, the circuit substrate has logic control circuits on a first surface. A semiconductor transistor flip-chip mounted on the circuit substrate is electrically connected to the control circuits on the first surface to thereby control the on and off switching of the flip-chip mounted device.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: September 25, 2012
    Assignee: Cree, Inc.
    Inventors: Umesh Mishra, Primit Parikh, Yifeng Wu
  • Publication number: 20120223366
    Abstract: A multiple field plate transistor includes an active region, with a source, drain, and gate. A first spacer layer is between the source and the gate and a second spacer layer between the drain and the gate. A first field plate on the first spacer layer and a second field plate on the second spacer layer are connected to the gate. A third field plate connected to the source is on a third spacer layer, which is on the gate and the first and second field plates and spacer layers. The transistor exhibits a blocking voltage of at least 600 Volts while supporting current of at least 2 or 3 Amps with on resistance of no more than 5.0 or 5.3 m?-cm2, respectively, and at least 900 Volts while supporting current of at least 2 or 3 Amps with on resistance of no more than 6.6 or 7.0 m?-cm2, respectively.
    Type: Application
    Filed: April 12, 2012
    Publication date: September 6, 2012
    Inventors: Yifeng Wu, Primit Parikh, Umesh Mishra
  • Patent number: 8237198
    Abstract: Planar Schottky diodes for which the semiconductor material includes a heterojunction which induces a 2DEG in at least one of the semiconductor layers. A metal anode contact is on top of the upper semiconductor layer and forms a Schottky contact with that layer. A metal cathode contact is connected to the 2DEG, forming an ohmic contact with the layer containing the 2DEG.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: August 7, 2012
    Assignee: Transphorm Inc.
    Inventors: Yifeng Wu, Rongming Chu, Primit Parikh, Umesh Mishra, Ilan Ben-Yaacov, Likun Shen
  • Publication number: 20120193677
    Abstract: A III-N device is described with a III-N layer, an electrode thereon, a passivation layer adjacent the III-N layer and electrode, a thick insulating layer adjacent the passivation layer and electrode, a high thermal conductivity carrier capable of transferring substantial heat away from the III-N device, and a bonding layer between the thick insulating layer and the carrier. The bonding layer attaches the thick insulating layer to the carrier. The thick insulating layer can have a precisely controlled thickness and be thermally conductive.
    Type: Application
    Filed: February 2, 2011
    Publication date: August 2, 2012
    Applicant: TRANSPHORM INC.
    Inventors: Primit Parikh, Yuvaraj Dora, Yifeng Wu, Umesh Mishra, Nicholas Fichtenbaum
  • Publication number: 20120175680
    Abstract: Enhancement mode III-nitride devices are described. The 2DEG is depleted in the gate region so that the device is unable to conduct current when no bias is applied at the gate. Both gallium face and nitride face devices formed as enhancement mode devices.
    Type: Application
    Filed: February 28, 2012
    Publication date: July 12, 2012
    Applicant: Transphorm Inc.
    Inventors: Chang Soo SUH, Umesh MISHRA
  • Publication number: 20120153390
    Abstract: A transistor device is described that includes a source, a gate, a drain, a semiconductor material which includes a gate region between the source and the drain, a plurality of channel access regions in the semiconductor material on either side of the gate, a channel in the semiconductor material having an effective width in the gate region and in the channel access regions, and an isolation region in the gate region. The isolation region serves to reduce the effective width of the channel in the gate region without substantially reducing the effective width of the channel in the access regions. Alternatively, the isolation region can be configured to collect holes that are generated in the transistor device. The isolation region may simultaneously achieve both of these functions.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 21, 2012
    Applicant: TRANSPHORM INC.
    Inventors: Umesh Mishra, Srabanti Chowdhury
  • Patent number: 8193562
    Abstract: Enhancement mode III-nitride devices are described. The 2DEG is depleted in the gate region so that the device is unable to conduct current when no bias is applied at the gate. Both gallium face and nitride face devices formed as enhancement mode devices.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: June 5, 2012
    Assignee: Tansphorm Inc.
    Inventors: Chang Soo Suh, Umesh Mishra
  • Patent number: 8169005
    Abstract: A multiple field plate transistor includes an active region, with a source, a drain, and a gate. A first spacer layer is over the active region between the source and the gate and a second spacer layer over the active region between the drain and the gate. A first field plate on the first spacer layer is connected to the gate. A second field plate on the second spacer layer is connected to the gate. A third spacer layer is on the first spacer layer, the second spacer layer, the first field plate, the gate, and the second field plate, with a third field plate on the third spacer layer and connected to the source. The transistor exhibits a blocking voltage of at least 600 Volts while supporting a current of at least 2 Amps with an on resistance of no more than 5.0 m?-cm2, of at least 600 Volts while supporting a current of at least 3 Amps with an on resistance of no more than 5.3 m?-cm2, of at least 900 Volts while supporting a current of at least 2 Amps with an on resistance of no more than 6.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: May 1, 2012
    Assignee: Cree, Inc.
    Inventors: Yifeng Wu, Primit Parikh, Umesh Mishra