Patents by Inventor Umesh Mishra

Umesh Mishra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090267078
    Abstract: A III-N semiconductor device that includes a substrate and a nitride channel layer including a region partly beneath a gate region, and two channel access regions on opposite sides of the part beneath the gate. The channel access regions may be in a different layer from the region beneath the gate. The device includes an AlXN layer adjacent the channel layer wherein X is gallium, indium or their combination, and a preferably n-doped GaN layer adjacent the AlXN layer in the areas adjacent to the channel access regions. The concentration of Al in the AlXN layer, the AlXN layer thickness and the n-doping concentration in the n-doped GaN layer are selected to induce a 2DEG charge in channel access regions without inducing any substantial 2DEG charge beneath the gate, so that the channel is not conductive in the absence of a switching voltage applied to the gate.
    Type: Application
    Filed: April 23, 2008
    Publication date: October 29, 2009
    Applicant: Transphorm Inc.
    Inventors: Umesh Mishra, Robert Coffie, Likun Shen, Ilan Ben-Yaacov, Primit Parikh
  • Publication number: 20090236635
    Abstract: A HEMT comprising an active region comprising a plurality of active semiconductor layers formed on a substrate. Source electrode, drain electrode, and gate are formed in electrical contact with the active region. A spacer layer is formed on at least a portion of a surface of said active region and covering the gate. A field plate is formed on the spacer layer and electrically connected to the source electrode, wherein the field plate reduces the peak operating electric field in the HEMT.
    Type: Application
    Filed: May 7, 2009
    Publication date: September 24, 2009
    Inventors: Yifeng Wu, Primit Parikh, Umesh Mishra, Marcia Moore
  • Patent number: 7573078
    Abstract: A transistor comprising a plurality of active semiconductor layers on a substrate, with source and drain electrodes in contact with the semiconductor layers. A gate is formed between the source and drain electrodes and on the plurality of semiconductor layers. A plurality of field plates are arranged over the semiconductor layers, each of which extends from the edge of the gate toward the drain electrode, and each of which is isolated from said semiconductor layers and from the others of the field plates. The topmost of the field plates is electrically connected to the source electrode and the others of the field plates are electrically connected to the gate or the source electrode.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: August 11, 2009
    Assignee: Cree, Inc.
    Inventors: Yifeng Wu, Primit Parikh, Umesh Mishra, Marcia Moore
  • Patent number: 7550783
    Abstract: A HEMT comprising a plurality of active semiconductor layers formed on a substrate. Source electrode, drain electrode, and gate are formed in electrical contact with the plurality of active layers. A spacer layer is formed on at least a portion of a surface of said plurality of active layers and covering the gate. A field plate is formed on the spacer layer and electrically connected to the source electrode, wherein the field plate reduces the peak operating electric field in the HEMT.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: June 23, 2009
    Assignee: Cree, Inc.
    Inventors: Yifeng Wu, Primit Parikh, Umesh Mishra, Marcia Moore
  • Publication number: 20090145771
    Abstract: Devices, systems and methods for improved electrical appliances which allow for efficient and safe production of hydrogen and oxygen gas for a flame are disclosed. An appliance for providing gas for combustion may comprise a water inlet, a power source, and an electrolyzer with at least one electrolysis transistor generating hydrogen and oxygen. The appliance may also comprise a gas handling unit for collecting the output of the electrolyzer and transporting it to a burner, and an output interface.
    Type: Application
    Filed: August 28, 2008
    Publication date: June 11, 2009
    Inventors: Umesh Mishra, Rakesh Lal, Lee McCarthy, Primit Parikh
  • Publication number: 20090146185
    Abstract: Enhancement-mode III-nitride transistors are described that have a large source to drain barrier in the off state, low off state leakage, and low channel resistance in the access regions are described. The devices can include a charge depleting layer under the gate and/or a charge enhancing layer outside of the gate region, that is, in the access region.
    Type: Application
    Filed: November 26, 2008
    Publication date: June 11, 2009
    Applicant: TRANSPHORM INC.
    Inventors: Chang Soo Suh, Ilan Ben-Yaacov, Robert Coffie, Umesh Mishra
  • Publication number: 20090134041
    Abstract: Devices, systems and methods for improved electrical appliances which allow for efficient and safe production of hydrogen and oxygen gas for internal combustion engines and the like are disclosed. An appliance for providing gas for combustion may comprise a water inlet, a power source, and an electrolyzer with at least one electrolysis transistor generating hydrogen and oxygen. The appliance may also comprise a gas handling unit for collecting the output of the electrolyzer and transporting it to an engine.
    Type: Application
    Filed: October 15, 2008
    Publication date: May 28, 2009
    Inventors: Umesh Mishra, Rakesh Lal, Lee McCarthy, Primit Parikh
  • Publication number: 20090072269
    Abstract: A diode device can include an enhancement mode gallium nitride transistor having a gate, a drain and a source, wherein the gate is connected to the drain to enable the device to perform as a diode. In some embodiments, an integrated switching-diode is described that includes a substrate, a gallium nitride switching transistor on the substrate and a free wheeling diode on the substrate and coupled to the switching transistor.
    Type: Application
    Filed: September 17, 2007
    Publication date: March 19, 2009
    Inventors: Chang Soo Suh, James Honea, Umesh Mishra
  • Publication number: 20090072272
    Abstract: Enhancement mode III-nitride devices are described. The 2DEG is depleted in the gate region so that the device is unable to conduct current when no bias is applied at the gate. Both gallium face and nitride face devices formed as enhancement mode devices.
    Type: Application
    Filed: September 17, 2007
    Publication date: March 19, 2009
    Applicant: Transphorm Inc.
    Inventors: Chang Soo Suh, Umesh Mishra
  • Publication number: 20090075455
    Abstract: Methods of forming a stable N-polar III-nitride structure are described. A Ga-polar device can be formed on a substrate. A carrier wafer is attached to the Ga-polar surface. The substrate is removed from the assembly. The N-polar surface that remains is offcut and, optionally, subsequent layers are formed on the offcut surface.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 19, 2009
    Inventor: Umesh Mishra
  • Patent number: 7476956
    Abstract: New Group III based diodes are disclosed having a low on state voltage (Vf) and structures to keep reverse current (Irev) relatively low. One embodiment of the invention is Schottky barrier diode made from the GaN material system in which the Fermi level (or surface potential) of is not pinned. The barrier potential at the metal-to-semiconductor junction varies depending on the type of metal used and using particular metals lowers the diode's Schottky barrier potential and results in a Vf in the range of 0.1-0.3V. In another embodiment a trench structure is formed on the Schottky diodes semiconductor material to reduce reverse leakage current. and comprises a number of parallel, equally spaced trenches with mesa regions between adjacent trenches. A third embodiment of the invention provides a GaN tunnel diode with a low Vf resulting from the tunneling of electrons through the barrier potential, instead of over it. This embodiment can also have a trench structure to reduce reverse leakage current.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: January 13, 2009
    Assignee: Cree, Inc.
    Inventors: Primit Parikh, Umesh Mishra
  • Publication number: 20080296173
    Abstract: An electrolysis transistor for providing high-density electrochemistry and products utilizing the same, and high-efficiency electrolysis and electrochemical processes is disclosed. The electrolysis transistor may comprise an electrolyte, one or more working electrodes for transferring charge to or from said electrolyte, and one or more gate structures for altering electrode over-voltage and modifying the barrier at the electrode-electrolyte interface, reducing the voltage necessary for electrolysis. An electrochemical or photo-electrochemical cell may incorporate one or more of these electrolysis transistors.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 4, 2008
    Inventors: Umesh Mishra, Rakesh Lai, Likun Shen, Lee McCarthy, Primit Parikh
  • Patent number: 7388236
    Abstract: Field effect transistors having a power density of greater than 40 W/mm when operated at a frequency of at least 4 GHz are provided. The power density of at least 40 W/mm may be provided at a drain voltage of 135 V. Transistors with greater than 60% PAE and a power density of at least 5 W/mm when operated at 10 GHz at drain biases from 28 V to 48 V are also provided.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: June 17, 2008
    Assignee: Cree, Inc.
    Inventors: Yifeng Wu, Primit Parikh, Umesh Mishra, Marcia Moore
  • Publication number: 20080116492
    Abstract: A multiple field plate transistor includes an active region, with a source, a drain, and a gate. A first spacer layer is over the active region between the source and the gate and a second spacer layer over the active region between the drain and the gate. A first field plate on the first spacer layer is connected to the gate. A second field plate on the second spacer layer is connected to the gate. A third spacer layer is on the first spacer layer, the second spacer layer, the first field plate, the gate, and the second field plate, with a third field plate on the third spacer layer and connected to the source. The transistor exhibits a blocking voltage of at least 600 Volts while supporting a current of at least 2 Amps with an on resistance of no more than 5.0 m?-cm2, of at least 600 Volts while supporting a current of at least 3 Amps with an on resistance of no more than 5.3 m?-cm2, of at least 900 Volts while supporting a current of at least 2 Amps with an on resistance of no more than 6.
    Type: Application
    Filed: November 21, 2006
    Publication date: May 22, 2008
    Inventors: Yifeng Wu, Primit Parikh, Umesh Mishra
  • Publication number: 20080078439
    Abstract: A method for electrically connecting semiconductor layers using a layer less than 150 nm thick of a semiconductor material that exhibits strong piezoelectric and/or spontaneous electrical polarization to provide a tunnel junction that electrically connects the semiconductor layers. The semiconductor material that exhibits strong piezoelectric and/or spontaneous electrical polarization comprises an interface between differing (Al,In,Ga)N alloys. The tunnel junction may be between p-type and n-type semiconductor layers, or it may be between two n-type or p-type semiconductor layers. Stacked Schottky diodes or stacked photo-active junctions may be fabricated using this method.
    Type: Application
    Filed: June 25, 2007
    Publication date: April 3, 2008
    Inventors: Michael Grundmann, Umesh Mishra
  • Patent number: 7332365
    Abstract: A method according to the present invention for fabricating high light extraction photonic devices comprising growing an epitaxial semiconductor structure on a substrate and depositing a first mirror layer on the epitaxial semiconductor structure such that the epitaxial semiconductor structure is sandwiched between the first mirror layer and the substrate. Flip-chip mounting the epitaxial semiconductor structure, with its first mirror and substrate on a submount such that the epitaxial semiconductor device structure is sandwiched between the submount and substrate. The substrate is then removed from the epitaxial structure by introducing an etch environment to the substrate. A second mirror layer is deposited on the epitaxial semiconductor structure such that the epitaxial semiconductor structure is sandwiched between the first and second mirror layers. A device according to the present invention comprising a resonant cavity light emitting diode (RCLED) mounted to a submount.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: February 19, 2008
    Assignee: Cree, Inc.
    Inventors: Shuji Nakamura, Steven DenBaars, John Edmond, Chuck Swoboda, Umesh Mishra
  • Publication number: 20070267654
    Abstract: A method for growing reduced defect density planar gallium nitride (GaN) films is disclosed. The method includes the steps of (a) growing at least one silicon nitride (SiNx) nanomask layer over a GaN template, and (b) growing a thickness of a GaN film on top of the SiNx nanomask layer.
    Type: Application
    Filed: May 9, 2007
    Publication date: November 22, 2007
    Inventors: Arpan Chakraborty, Kwang-Choong Kim, James Speck, Steven DenBaars, Umesh Mishra
  • Publication number: 20070235775
    Abstract: Field effect transistors having a power density of greater than 40 W/mm when operated at a frequency of at least 4 GHz are provided. The power density of at least 40 W/mm may be provided at a drain voltage of 135 V. Transistors with greater than 60% PAE and a power density of at least 5 W/mm when operated at 10 GHz at drain biases from 28 V to 48 V are also provided.
    Type: Application
    Filed: March 29, 2006
    Publication date: October 11, 2007
    Inventors: Yifeng Wu, Primit Parikh, Umesh Mishra, Marcia Moore
  • Publication number: 20070224710
    Abstract: A fluorine treatment that can shape the electric field profile in electronic devices in 1, 2, or 3 dimensions is disclosed. A method to increase the breakdown voltage of AlGaN/GaN high electron mobility transistors, by the introduction of a controlled amount of dispersion into the device, is also disclosed. This dispersion is large enough to reduce the peak electric field in the channel, but low enough in order not to cause a significant decrease in the output power of the device. In this design, the whole transistor is passivated against dispersion with the exception of a small region 50 to 100 nm wide right next to the drain side of the gate. In that region, surface traps cause limited amounts of dispersion, that will spread the high electric field under the gate edge, therefore increasing the breakdown voltage.
    Type: Application
    Filed: November 15, 2006
    Publication date: September 27, 2007
    Applicant: The Regents of the University of California
    Inventors: Tomas Palacios, Likun Shen, Umesh Mishra
  • Publication number: 20070205433
    Abstract: AlGaN/GaN HEMTs are disclosed having a thin AlGaN layer to reduce trapping and also having additional layers to reduce gate leakage and increase the maximum drive current. One HEMT according to the present invention comprises a high resistivity semiconductor layer with a barrier semiconductor layer on it. The barrier layer has a wider bandgap than the high resistivity layer and a 2DEG forms between the layers. Source and drain contacts contact the barrier layer, with part of the surface of the barrier layer uncovered by the contacts. An insulating layer is included on the uncovered surface of the barrier layer and a gate contact is included on the insulating layer. The insulating layer forms a barrier to gate leakage current and also helps to increase the HEMT's maximum current drive. The invention also includes methods for fabricating HEMTs according to the present invention. In one method, the HEMT and its insulating layer are fabricated using metal-organic chemical vapor deposition (MOCVD).
    Type: Application
    Filed: May 3, 2007
    Publication date: September 6, 2007
    Inventors: Primit Parikh, Umesh Mishra, Yifeng Wu