Patents by Inventor Uming Ko

Uming Ko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7920020
    Abstract: A method includes parsing a design of the integrated circuit to define cells in automatic power gating power domains, automatically creating an automatic power gating power domain netlist from the parsed design of the integrated circuit, and placing and routing the automatic power gating power domain netlist to produce a layout for the integrated circuit. The parsing partitions a high-level power domain of the integrated circuit into one or more automatic power gating power domains. The automatic power gating power domains have substantially zero-cycle power up times, thereby enabling transparent operation. Furthermore, the automatic power gating power domains may be automatically inserted into designs of integrated circuits, thereby relieving integrated circuit designers of the task of inserting power domains and associated hardware and software.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: April 5, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Alice Wang, Hugh T. Mair, Gordon Gammie, Uming Ko
  • Publication number: 20100253387
    Abstract: A method includes parsing a design of the integrated circuit to define cells in automatic power gating power domains, automatically creating an automatic power gating power domain netlist from the parsed design of the integrated circuit, and placing and routing the automatic power gating power domain netlist to produce a layout for the integrated circuit. The parsing partitions a high-level power domain of the integrated circuit into one or more automatic power gating power domains. The automatic power gating power domains have substantially zero-cycle power up times, thereby enabling transparent operation. Furthermore, the automatic power gating power domains may be automatically inserted into designs of integrated circuits, thereby relieving integrated circuit designers of the task of inserting power domains and associated hardware and software.
    Type: Application
    Filed: June 11, 2010
    Publication date: October 7, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: ALICE WANG, HUGH T. MAIR, GORDON GAMMIE, UMING KO
  • Patent number: 7760011
    Abstract: A method includes parsing a design of the integrated circuit to define cells in automatic power gating power domains, automatically creating an automatic power gating power domain netlist from the parsed design of the integrated circuit, and placing and routing the automatic power gating power domain netlist to produce a layout for the integrated circuit. The parsing partitions a high-level power domain of the integrated circuit into one or more automatic power gating power domains. The automatic power gating power domains have substantially zero-cycle power up times, thereby enabling transparent operation. Furthermore, the automatic power gating power domains may be automatically inserted into designs of integrated circuits, thereby relieving integrated circuit designers of the task of inserting power domains and associated hardware and software.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: July 20, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Alice Wang, Hugh T. Mair, Gordon Gammie, Uming Ko
  • Publication number: 20100103760
    Abstract: Memory power management systems and methods are provided. One embodiment of the present invention includes a memory power management system. The system comprises a first low dropout (LDO) regulator that provides an active operating voltage that is derived from a first supply voltage to power a memory array during an active mode. The system further comprises a second LDO regulator that provides a minimum memory retention voltage that is derived from a second supply voltage to power the memory array in a standby mode, wherein the second supply voltage also powers at least one peripheral circuit for reading from and/or writing to the memory array.
    Type: Application
    Filed: October 27, 2008
    Publication date: April 29, 2010
    Inventors: Hugh T. Mair, Robert L. Pitts, Alice Wang, Sumanth K. Gururjarao, Ramaprasath Vilangudipitchai, Gordon Gammie, Uming Ko
  • Patent number: 7639056
    Abstract: In a method and system for data retention, a data input is latched by a first latch. A second latch coupled to the first latch receives the data input for retention while the first latch is inoperative in a standby power mode. The first latch receives power from a first power line that is switched off during the standby power mode. The second latch receives power from a second power line. A controller receives a clock input and a retention signal and provides a clock output to the first latch and the second latch. A change in the retention signal is indicative of a transition to the standby power mode. The controller continues to hold the clock output at a predefined voltage level and the second latch continues to receive power from the second power line in the standby power mode, thereby retaining the data input.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: December 29, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Sumanth Katte Gururajarao, Hugh T. Mair, David B. Scott, Uming Ko
  • Patent number: 7630270
    Abstract: The present disclosure provides a dual-mode voltage controller, a method of supplying voltage to SRAM periphery circuits and an integrated circuit. In one embodiment, the dual-mode voltage controller is for use with an SRAM array and includes a voltage switching unit connected to a digital core voltage and an SRAM array voltage to form a structure capable of switching at least one SRAM periphery circuit between the digital core voltage and the SRAM array voltage.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: December 8, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Uming Ko, Gordon Gammie, Sumanth K. Gururajarao
  • Publication number: 20090267638
    Abstract: An apparatus, system and method for asynchronously reducing power in a power domain. In one embodiment, the method includes: (1) receiving a sleep command for the power domain, (2) receiving, upon receiving the sleep command, an affirmative retention status signal denoting that a retention area in the power domain has stored data, (3) receiving, upon receiving the sleep command, an affirmative isolation status signal that denotes that an isolation of the power domain has occurred and (4) providing a power domain off command to the power domain upon receiving at least the sleep command, the affirmative status retention signal and the affirmative status isolation signal. In another embodiment, multiple enable signals are employed to generate a “glitch-free” control for a power switch.
    Type: Application
    Filed: April 28, 2008
    Publication date: October 29, 2009
    Applicant: Texas Instruments Incorporated
    Inventors: Bixia Li, Hugh Mair, Minh Chau, Alice Wang, Uming Ko
  • Patent number: 7570100
    Abstract: System and method for providing power to circuitry while avoiding a large transient current. A preferred embodiment comprises a distributed switch (such as switch arrangement 400) with a plurality of switches (such as switch 405) coupling a power supply to the circuitry. Each switch is individually controlled by a control signal and is turned on sequentially. Also coupled to each switch is a pre-driver circuit (such as pre-driver circuit 410). The pre-driver circuit comprises a potential adjust circuit (such as potential adjust circuit 505) that rapidly adjusts a voltage potential at the switch and a rate adjust circuit (such as the rate adjust circuit 520) that accelerates the power ramp-up across the switch once transient currents are no longer a concern. Adjusting the voltage potential so that the switch operates in a saturation mode increases an effective capacitance across the switch and thereby retarding the power ramp-up across the switch.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: August 4, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Wei Dong, Hiep Tran, Hugh T. Mair, Uming Ko
  • Patent number: 7564077
    Abstract: An integrated circuit. The integrated circuit comprises an area having a layout aligned in rows. Each row is definable by a pair of row boundaries. The integrated circuit also comprises a plurality of cells, comprising a first set of cells. Each cell in the first set of cells spans at least two rows and comprises a PMOS transistor having a source/drain region that spans across one of the row boundaries and an NMOS transistor having a source/drain region that spans across one of the row boundaries.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: July 21, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Uming Ko, Dharin Shah, Senthil Sundaramoorthy, Girishankar Gurumurthy, Sumanth Gururajarao, Rolf Lagerquist, Clive Bittlestone
  • Patent number: 7519925
    Abstract: An electronic system (10). The system comprises circuitry (P1) for receiving a system voltage from a voltage supply. The system also comprises circuitry (141), responsive to the system voltage, for providing data processing functionality. The circuitry for providing data processing functionality comprises a critical path (CP1) and the critical path comprises a plurality of transistors. At least some transistors in the plurality of transistors have a corresponding predetermined voltage operating limit corresponding to a predicted lifespan. The system also comprises circuitry (221) for indicating a potential capability of operational speed of the critical path. The system also comprises circuitry (CB) for coupling the system voltage to the critical path. Lastly, the system also comprises circuitry (26) for adjusting the system voltage, as provided by the voltage supply, in response to the circuitry for indicating a potential capability.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: April 14, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Sami Issa, Uming Ko, David Scott
  • Publication number: 20090039952
    Abstract: A method includes parsing a design of the integrated circuit to define cells in automatic power gating power domains, automatically creating an automatic power gating power domain netlist from the parsed design of the integrated circuit, and placing and routing the automatic power gating power domain netlist to produce a layout for the integrated circuit. The parsing partitions a high-level power domain of the integrated circuit into one or more automatic power gating power domains. The automatic power gating power domains have substantially zero-cycle power up times, thereby enabling transparent operation. Furthermore, the automatic power gating power domains may be automatically inserted into designs of integrated circuits, thereby relieving integrated circuit designers of the task of inserting power domains and associated hardware and software.
    Type: Application
    Filed: November 29, 2007
    Publication date: February 12, 2009
    Inventors: Alice Wang, Hugh T. Mair, Gordon Gammie, Uming Ko
  • Publication number: 20080307240
    Abstract: An electronic circuit including a power managed circuit (2610), and a power management control circuit (3570) coupled to the power managed circuit (2610) and operable to select between at least a first operating performance point (OPP1) and a second higher operating performance point (OPP2) for the power managed circuit (2610), each performance point including a respective pair (Vn, Fn) of voltage and operating frequency, and the power management control circuit (3570) further operable to control dynamic power switching of the power managed circuit (2610) based on a condition wherein the power managed circuit (2610) at a given operating performance point has a static power dissipation (4820.1), and the dynamic power switching puts the power managed circuit in a lower static power state (4860.1) that dissipates less power than the static power dissipation (4820.1).
    Type: Application
    Filed: June 8, 2007
    Publication date: December 11, 2008
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Franck Dahan, Gilles Dubost, Gordon Gammie, Uming Ko, Hugh Mair, Sang-Won Song, Alice Wang, William D. Wilson
  • Publication number: 20080043560
    Abstract: The present disclosure provides a dual-mode voltage controller, a method of supplying voltage to SRAM periphery circuits and an integrated circuit. In one embodiment, the dual-mode voltage controller is for use with an SRAM array and includes a voltage switching unit connected to a digital core voltage and an SRAM array voltage to form a structure capable of switching at least one SRAM periphery circuit between the digital core voltage and the SRAM array voltage.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 21, 2008
    Applicant: Texas Instruments Incorporated
    Inventors: Uming Ko, Gordon Gammie, Sumanth K. Gururajarao
  • Publication number: 20070290270
    Abstract: An integrated circuit. The integrated circuit comprises an area having a layout aligned in rows. Each row is definable by a pair of row boundaries. The integrated circuit also comprises a plurality of cells, comprising a first set of cells. Each cell in the first set of cells spans at least two rows and comprises a PMOS transistor having a source/drain region that spans across one of the row boundaries and an NMOS transistor having a source/drain region that spans across one of the row boundaries.
    Type: Application
    Filed: May 7, 2007
    Publication date: December 20, 2007
    Inventors: Uming Ko, Dharin Shah, Senthil Sundaramoorthy, Girishankar Gurumurthy, Sumanth Gururajarao, Rolf Lagerquist, Clive Bittlestone
  • Patent number: 7282905
    Abstract: System and method for detecting transistor failure in large-scale integrated circuits by measuring IDDQ. A preferred embodiment comprises a switch structure for an integrated circuit made up of a plurality of main switches (such as main switch 410) selectively coupling a power sub-domain to a power source pin, a plurality of pi-switches (such as pi-switch 415) selectively coupling pairs of power sub-domains, and a plurality of IDDQ switches (such as IDDQ switch 425) selectively coupling the power sub-domains to a VIDDQ pin. The pi-switches can decouple the power sub-domains while the IDDQ switches can enable the measurement of the quiescent current in the power sub-domains. The use of pi-switches and IDDQ switches can permit the measurement of the quiescent current in the power sub-domains without requiring the use of isolation buffers and needed to powering on and off the integrated circuit between current measurements in the different power sub-domains.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: October 16, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Wei Chen, Hugh T. Mair, Uming Ko, David B. Scott
  • Publication number: 20070223294
    Abstract: A computer system comprising a control logic and a storage coupled to the control logic. The storage comprises a plurality of bitcells and bitlines used to transfer data between the control logic and the bitcells. The control logic provides an address of a target bitcell to the storage. Within a single clock cycle, the storage uses the address to activate the target bitcell, to precharge bitlines coupled to the target bitcell, and to access the target bitcell.
    Type: Application
    Filed: March 21, 2006
    Publication date: September 27, 2007
    Applicant: Texas Instruments Incorporated
    Inventors: Sudha Thiruvengadam, Ramaprasath Vilangudipitchai, David Scott, Uming Ko, Alice Wang
  • Publication number: 20070046362
    Abstract: A device for adaptively controlling a voltage supplied to circuitry in close proximity to the device, comprising a processing module and a first tracking element coupled to the processing module. The first tracking element produces a first value indicative of a first estimated speed associated with the circuitry. The device also comprises a second tracking element coupled to the processing module. The second tracking element produces a second value indicative of a second estimated speed associated with the circuitry. The processing module compares each of the first and second values to respective target values and causes a voltage output to be adjusted based on the comparisons. The first and second tracking elements comprise a plurality of transistors, at least some of the transistors selectively provided with a transistor bias voltage to adjust transistor speed.
    Type: Application
    Filed: August 26, 2005
    Publication date: March 1, 2007
    Applicant: Texas Instruments Incorporated
    Inventors: Gordon Gammie, Alice Wang, Uming Ko, David Scott
  • Patent number: 7180208
    Abstract: System and method for reducing voltage fluctuations in an integrated circuit with multiple power domains and sub-domains. A preferred embodiment comprises a plurality of voltage sources and a switching network (such as switching network 320) wherein outputs from the plurality of voltage sources are inputs. The switching network can couple the outputs of voltage sources (based on a mapping) with the same output voltage levels to reduce voltage fluctuation amongst power domains coupled to the coupled outputs. The coupling may be performed by a switching structure (such as the switching structure 215) that can controllably electrically couple two outputs.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: February 20, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Wei Chen, Hugh Mair, Uming Ko, David Scott
  • Patent number: 7162652
    Abstract: A power management system (12) in an electronic device (10). The system comprises circuitry (14x), responsive to at least one system parameter, for providing data processing functionality, where the circuitry for providing data processing functionality comprises a data path (CPx). The system alternatively or cumulatively also comprises circuitry (22x) for indicating a potential capability of operational speed of the data path and/or circuitry (24x) for indicating an amount of current leakage of the circuitry for providing data processing functionality. The system also comprises circuitry (26) for adjusting the at least one system parameter in response to either or both of the circuitry for indicating a potential capability and the circuitry for indicating an amount of current leakage.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: January 9, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Sami Issa, Uming Ko, Baher Haroun, David Scott
  • Publication number: 20060267654
    Abstract: In a method and system for data retention, a data input is latched by a first latch. A second latch coupled to the first latch receives the data input for retention while the first latch is inoperative in a standby power mode. The first latch receives power from a first power line that is switched off during the standby power mode. The second latch receives power from a second power line. A controller receives a clock input and a retention signal and provides a clock output to the first latch and the second latch. A change in the retention signal is indicative of a transition to the standby power mode. The controller continues to hold the clock output at a predefined voltage level and the second latch continues to receive power from the second power line in the standby power mode, thereby retaining the data input.
    Type: Application
    Filed: May 26, 2005
    Publication date: November 30, 2006
    Applicant: Texas Instruments Incorporated
    Inventors: Sumanth Gururajarao, Hugh Mair, David Scott, Uming Ko