Patents by Inventor Uri Frodis

Uri Frodis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11973301
    Abstract: Embodiments are directed to microscale and millimeter scale multi-layer structures (e.g. probe structures for making contact between two electronic components for example in semiconductor wafer and chip and electronic component test applications). Some embodiments of the invention provide structures that include a core and shell on at least one layer where the layer including the shell is formed from at least one core material and at least one shell material wherein the shell material is different from a shell material or a single structural material on at least one of an immediately preceding layer or an immediately succeeding layer and wherein the core material is different from any core material on at least one of an immediately preceding layer or an immediately succeeding layer.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: April 30, 2024
    Assignee: Microfabrica Inc.
    Inventor: Uri Frodis
  • Publication number: 20240113487
    Abstract: Embodiments are directed to microscale and millimeter scale multi-layer structures (e.g. probe structures for making contact between two electronic components for example in semiconductor wafer and chip and electronic component test applications). Some embodiments of the invention provide structures that include a core and shell on at least one layer where the layer including the shell is formed from at least one core material and at least one shell material wherein the shell material is different from a shell material or a single structural material on at least one of an immediately preceding layer or an immediately succeeding layer and wherein the core material is different from any core material on at least one of an immediately preceding layer or an immediately succeeding layer.
    Type: Application
    Filed: December 14, 2023
    Publication date: April 4, 2024
    Inventor: Uri Frodis
  • Publication number: 20240103040
    Abstract: Vertical probes, formed of at least one layer that longitudinally includes a first and a second end and a central portion, with the central portion including at least three compliant arms wherein each of the two outer arms include a material having a yield strength greater than a first amount and the at least one intermediate arm is formed of a material having a yield strength less than the first yield strength amount wherein a yield strength of the material of the intermediate arm has a ratio to that of an outer arm of less than 1, more preferably less than 0.8, even more preferably less than 0.6, and most preferably less than 0.4.
    Type: Application
    Filed: September 28, 2021
    Publication date: March 28, 2024
    Applicant: Microfabrica Inc.
    Inventor: Uri Frodis
  • Publication number: 20240097390
    Abstract: Embodiments are directed to microscale and millimeter scale multi-layer structures (e.g. probe structures for making contact between two electronic components for example in semiconductor wafer and chip and electronic component test applications). Some embodiments of the invention provide structures that include a core and shell on at least one layer where the layer including the shell is formed from at least one core material and at least one shell material wherein the shell material is different from a shell material or a single structural material on at least one of an immediately preceding layer or an immediately succeeding layer and wherein the core material is different from any core material on at least one of an immediately preceding layer or an immediately succeeding layer.
    Type: Application
    Filed: February 24, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventor: Uri Frodis
  • Publication number: 20240094261
    Abstract: Probes for testing (e.g. wafer level testing or socket level testing) of electronic devices (e.g. semiconductor devices) and more particularly, arrays of such probes are provided. Probes are formed by initially fabricating probe preforms in batch with bases and/or ends located in array patterns, directly or indirectly on one or more build substrates with the arrayed preforms being in a longitudinally compressed state and whereafter the preforms are longitudinally plastically deformed to yield probes or partially formed probes with extended longitudinal lengths. Probes may be formed with deformable spring elements formed from one or more single layers which are joined by vertical elements located on other layers or they may be formed by spring elements that are formed as multi-layer structures. Arrays may include probe preforms with laterally overlapping or interlaced structures (but longitudinally displaced) which may remain laterally overlapping or become laterally displaced upon plastic deformation.
    Type: Application
    Filed: August 12, 2021
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Michael S. Lockard, Uri Frodis, Dennis R. Smalley
  • Publication number: 20240061017
    Abstract: Probe arrays include spacers attached to the probes that were formed along with the probes. Methods of making probe arrays by (1) forming probes on their sides and possibly as linear arrays or combination subarrays (e.g. as a number of side-to-side joined linear arrays) having probes fixed in array positions by a sacrificial material that is temporarily retained after formation of the probes; (2) assembling the probe units into full array configurations using the spacers attached to the probes or using alternative alignment structures to set the spacing and/or alignment of the probe(s) of one unit with another unit; and (3) fixing the probes in their configurations (e.g. bonding to a substrate and/or engaging the probes with one or more guide plates) wherein the spacers are retained or are removed, in whole or in part, prior to putting the array to use.
    Type: Application
    Filed: September 18, 2023
    Publication date: February 22, 2024
    Inventors: MIchael S. Lockard, Uri Frodis, Dennis R. Smalley
  • Publication number: 20240017990
    Abstract: Electronic test probes formed in a batch have a plurality of multi-material layers wherein at least one of the materials is a sacrificial material and at least one other material is a structural material.
    Type: Application
    Filed: April 14, 2023
    Publication date: January 18, 2024
    Inventors: Duy P. Le, Rulon J. Larsen, Jeffrey A. Thompson, Uri Frodis, Dale S. McPherson, Kleun Kim, Mahmood Samiee, Nina C. Levy, Dennis R. Smalley
  • Publication number: 20240019463
    Abstract: Forming buckling beam probe arrays having MEMS probes engaged with guide plates during formation or after formation of the probes while the probes are held in the array configuration in which they were formed is disclosed. Probes can be formed in, or laterally aligned with, guide plate through holes. Guide plate engagement can occur by longitudinally locating guide plates on probes that are partially formed or fully formed with exposed ends, by forming probes within guide plate through holes, by forming guide plates around probes, or forming guide plates in lateral alignment with arrayed probes and then longitudinally engaging the probes and the through holes of the guide plates. Arrays can include probes and a substrate to which the probes are bonded with one or more guide plates. Final arrays can include probes held by guide plates with aligned or laterally shifted hole patterns.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 18, 2024
    Inventors: MIchael S. Lockard, Stefano Felici, Uri Frodis, Dennis R. Smalley
  • Patent number: 11828775
    Abstract: Probe arrays include spacers attached to the probes that were formed along with the probes. Methods of making probe arrays by (1) forming probes on their sides and possibly as linear arrays or combination subarrays (e.g. as a number of side-to-side joined linear arrays) having probes fixed in array positions by a sacrificial material that is temporarily retained after formation of the probes; (2) assembling the probe units into full array configurations using the spacers attached to the probes or using alternative alignment structures to set the spacing and/or alignment of the probe(s) of one unit with another unit; and (3) fixing the probes in their configurations (e.g. bonding to a substrate and/or engaging the probes with one or more guide plates) wherein the spacers are retained or are removed, in whole or in part, prior to putting the array to use.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: November 28, 2023
    Assignee: MICROFABRICA INC.
    Inventors: Michael S. Lockard, Uri Frodis, Dennis R. Smalley
  • Patent number: 11821918
    Abstract: Embodiments are directed to the formation of buckling beam probe arrays having MEMS probes that are engaged with guide plates during formation or after formation of the probes while the probes are held in the array configuration in which they were formed. In other embodiments, probes may be formed in, or laterally aligned with, guide plate through holes. Guide plate engagement may occur by longitudinally locating guide plates on probes that are partially formed or fully formed with exposed ends, by forming probes within guide plate through holes, by forming guide plates around probes, or forming guide plates in lateral alignment with arrayed probes and then longitudinally engaging the probes and the through holes of the guide plates. Final arrays may include probes and a substrate to which the probes are bonded along with one or more guide plates while in other embodiments final arrays may include probes held by a plurality of guide plates (e.g.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: November 21, 2023
    Assignee: MICROFABRICA INC.
    Inventors: Michael S. Lockard, Stefano Felici, Uri Frodis, Dennis R. Smalley
  • Publication number: 20230324435
    Abstract: Pin probes and pin probe arrays are provided that allow electric contact to be made with selected electronic circuit components. Some embodiments include one or more compliant pin elements located within a sheath. Some embodiments include pin probes that include locking or latching elements that may be used to fix pin portions of probes into sheaths. Some embodiments provide for fabrication of probes using multi-layer electrochemical fabrication methods.
    Type: Application
    Filed: April 12, 2023
    Publication date: October 12, 2023
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Uri Frodis, Heath A. Jensen
  • Publication number: 20230207426
    Abstract: Embodiments of the present invention are directed to heat transfer arrays, cold plates including heat transfer arrays along with inlets and outlets, and thermal management systems including cold-plates, pumps and heat exchangers. These devices and systems may be used to provide cooling of semiconductor devices or other devices and particularly such devices that produce high heat concentrations. The heat transfer arrays may include microjets, multi-stage microjets, microchannels, fins, wells, wells with flow passages, well with stress relief or stress propagation inhibitors, and integrated microjets and fins.
    Type: Application
    Filed: March 18, 2022
    Publication date: June 29, 2023
    Applicant: Microfabrica Inc.
    Inventors: Onnik Yaglioglu, Richard T. Chen, Will J. Tan, Jia Li, Uri Frodis, Nina C. Levy, Dennis R. Smalley
  • Publication number: 20230201968
    Abstract: Embodiments are directed to the formation micro-scale or millimeter scale structures or methods of making such structures wherein the structures are formed from at least one sheet structural material and may include additional sheet structural materials or deposited structural materials wherein all or a portion of the patterning of the structural materials occurs via laser cutting. In some embodiments, selective deposition is used to provide a portion of the patterning. In some embodiments the structural material or structural materials are bounded from below by a sacrificial bridging material (e.g. a metal) and possibly from above by a sacrificial capping material (e.g. a metal).
    Type: Application
    Filed: April 18, 2022
    Publication date: June 29, 2023
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Heath A. Jensen, Uri Frodis, Christopher G. Wiita, Michael S. Lockard, Irina Boguslavsky, Pavel Lembrikov, Dennis R. Smalley, Richard T. Chen
  • Patent number: 10961967
    Abstract: Embodiments are directed to fuel injectors for internal combustion engines (e.g. engines with reciprocating pistons and with compression-ignition or spark-ignition, Wankel engines, turbines, jets, rockets, and the like) and more particularly to improved nozzle configurations for use as part of such fuel injectors. Other embodiments are directed to enabling fabrication technology that can provide for formation of nozzles with complex configurations and particularly for technologies that form structures via multiple layers of selectively deposited material or in combination with fabrication from a plurality of layers where critical layers are planarized before attaching additional layers thereto or forming additional layers thereon. Other embodiments are directed to methods and apparatus for integrating such nozzles with injector bodies.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: March 30, 2021
    Assignee: Microfabrica Inc.
    Inventors: Gregory P. Schmitz, Ming Ting Wu, Uri Frodis, Eli Baldwin, Gabriel Jacobsohn
  • Patent number: 10939934
    Abstract: The present disclosure relates generally to the field of tissue removal and more particularly to methods and devices for use in medical applications involving selective tissue removal. One exemplary method includes the steps of providing a tissue cutting instrument capable of distinguishing between target tissue to be removed and non-target tissue, urging the instrument against the target tissue and the non-target tissue, and allowing the instrument to cut the target tissue while automatically avoiding cutting of non-target tissue. Various tools for carrying out this method are also described.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: March 9, 2021
    Assignee: Microfabrica Inc.
    Inventors: Michael S. Lockard, Uri Frodis, Adam L. Cohen, Richard T. Chen, Gregory P. Schmitz, Eric C. Miller, Ming Ting Wu, Arun S. Veeramani, Juan Diego Perea
  • Publication number: 20200354848
    Abstract: Some embodiments are directed to techniques for building single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while others use an intervening adhesion layer material. Some embodiments use different seed layer and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while others apply the materials in blanket fashion. Some embodiments remove extraneous material via planarization operations while other embodiments remove the extraneous material via etching operations. Other embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material.
    Type: Application
    Filed: April 28, 2020
    Publication date: November 12, 2020
    Applicant: Microfabrica Inc.
    Inventors: Adam L. Cohen, Michael S. Lockard, Kieun Kim, Qui T. Le, Gang Zhang, Uri Frodis, Dale S. McPherson, Dennis R. Smalley
  • Patent number: 10676836
    Abstract: Some embodiments are directed to techniques for building single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while others use an intervening adhesion layer material. Some embodiments use different seed layer and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while others apply the materials in blanket fashion. Some embodiments remove extraneous material via planarization operations while other embodiments remove the extraneous material via etching operations. Other embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: June 9, 2020
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Michael S. Lockard, Kieun Kim, Qui T. Le, Gang Zhang, Uri Frodis, Dale S. McPherson, Dennis R. Smalley
  • Publication number: 20190017189
    Abstract: Some embodiments are directed to techniques for building single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while others use an intervening adhesion layer material. Some embodiments use different seed layer and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while others apply the materials in blanket fashion. Some embodiments remove extraneous material via planarization operations while other embodiments remove the extraneous material via etching operations. Other embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material.
    Type: Application
    Filed: August 30, 2018
    Publication date: January 17, 2019
    Applicant: Microfabrica Inc.
    Inventors: Adam L. Cohen, Michael S. Lockard, Kieun Kim, Qui T. Le, Gang Zhang, Uri Frodis, Dale S. McPherson, Dennis R. Smalley
  • Publication number: 20180078274
    Abstract: The present disclosure relates generally to the field of tissue removal and more particularly to methods and devices for use in medical applications involving selective tissue removal. One exemplary method includes the steps of providing a tissue cutting instrument capable of distinguishing between target tissue to be removed and non-target tissue, urging the instrument against the target tissue and the non-target tissue, and allowing the instrument to cut the target tissue while automatically avoiding cutting of non-target tissue. Various tools for carrying out this method are also described.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 22, 2018
    Applicant: Microfabrica Inc.
    Inventors: Michael S. Lockard, Uri Frodis, Adam L. Cohen, Richard T. Chen, Gregory P. Schmitz, Eric C. Miller, Ming Ting Wu, Arun S. Veeramani, Juan Diego Perea, Ronald Leguidleguid, Gregory B. Arcenio
  • Patent number: 9919472
    Abstract: Embodiments are directed to methods of producing devices using modified multi-layer, multi-material electrochemical fabrication processes and/or using a laser cutting processes wherein individual layers or layer groups are formed and then stacked and bonded to produce prototypes or production parts. The methods can reduce the cost and lead time of prototyping when compared with previous multi-layer, multi-material electrochemical fabrication processes and can also reduce the lead time of production quantities, by allowing multiple layers of a multilayer device to be formed simultaneously, e.g. in parallel on the same wafer. Additionally, these methods may be used to extend the maximum height to which parts may practically be made. Finally, the methods allow geometries that are impossible, impractical or difficult to release (e.g. microfluidic devices such as pumps or parts with long, narrow channels) to be fabricated in multiple pieces and then joined after full or partial release.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: March 20, 2018
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Michael S. Lockard, Rulon J. Larsen, III, Uri Frodis, Kieun Kim, Dennis R. Smalley