Patents by Inventor Uri Frodis

Uri Frodis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9907564
    Abstract: The present invention relates generally to the field of micro-scale or millimeter scale devices and to the use of multi-layer multi-material electrochemical fabrication methods for producing such devices with particular embodiments relate to shredding devices and more particularly to shredding devices for use in medical applications. In some embodiments, tissue removal devices are used in procedures to removal spinal tissue and in other embodiments, similar devices are used to remove thrombus from blood vessel.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: March 6, 2018
    Assignee: Microfabrica Inc.
    Inventors: Michael S. Lockard, Uri Frodis, Adam L. Cohen, Richard T. Chen
  • Patent number: 9878401
    Abstract: Embodiments are directed to the formation micro-scale or millimeter scale structures or methods of making such structures wherein the structures are formed from at least one sheet structural material and may include additional sheet structural materials or deposited structural materials wherein all or a portion of the patterning of the structural materials occurs via laser cutting. In some embodiments, selective deposition is used to provide a portion of the patterning. In some embodiments the structural material or structural materials are bounded from below by a sacrificial bridging material (e.g. a metal) and possibly from above by a sacrificial capping material (e.g. a metal).
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: January 30, 2018
    Assignee: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Heath A. Jensen, Uri Frodis, Christopher G. Wiita, Michael S. Lockard, Irina Boguslavsky, Pavel Lembrikov, Dennis R. Smalley, Richard T. Chen
  • Publication number: 20170247807
    Abstract: Some embodiments are directed to techniques for building single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while others use an intervening adhesion layer material. Some embodiments use different seed layer and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while others apply the materials in blanket fashion. Some embodiments remove extraneous material via planarization operations while other embodiments remove the extraneous material via etching operations. Other embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material.
    Type: Application
    Filed: November 21, 2016
    Publication date: August 31, 2017
    Applicant: Microfabrica Inc.
    Inventors: Adam L. Cohen, Michael S. Lockard, Kieun Kim, Qui T. Le, Gang Zhang, Uri Frodis, Dale S. McPherson, Dennis R. Smalley
  • Patent number: 9714473
    Abstract: Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: July 25, 2017
    Assignee: Microfabrica Inc.
    Inventors: Uri Frodis, Adam L. Cohen, Michael S. Lockard
  • Publication number: 20170130759
    Abstract: Embodiments of the invention provide threaded elements alone, in mating pairs, or in conjunction with other elements. Embodiments of the invention also provide for design and fabrication of such threaded elements without violating minimum feature size design rules or causing other interference issues that may result from the fabrication of such thread elements using a multi-layer multi-material electrochemical fabrication process.
    Type: Application
    Filed: September 12, 2016
    Publication date: May 11, 2017
    Applicant: Microfabrica Inc.
    Inventors: Uri Frodis, Adam L. Cohen, Christopher R. Folk
  • Patent number: 9546431
    Abstract: Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: January 17, 2017
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Michael S. Lockard, Kieun Kim, Qui T. Le, Gang Zhang, Uri Frodis, Dale S. McPherson, Dennis R. Smalley
  • Patent number: 9540233
    Abstract: Electrochemical fabrication processes and apparatus for producing single layer or multi-layer structures where each layer includes the deposition of at least two materials and wherein the formation of at least some layers includes operations for reducing stress and/or curvature distortion when the structure is released from a sacrificial material which surrounded it during formation and possibly when released from a substrate on which it was formed. Six primary groups of embodiments are presented which are divide into eleven primary embodiments. Some embodiments attempt to remove stress to minimize distortion while others attempt to balance stress to minimize distortion.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: January 10, 2017
    Assignee: Microfabrica Inc.
    Inventors: Ananda H. Kumar, Jorge S. Albarran, Adam L. Cohen, Kieun Kim, Michael S. Lockard, Uri Frodis, Dennis R. Smalley
  • Patent number: 9533376
    Abstract: Embodiments are directed to the formation micro-scale or millimeter scale structures or method of making such structures wherein the structures are formed from at least one sheet structural material and may include additional sheet structural materials or deposited structural materials wherein all or a portion of the patterning of the structural materials occurs via laser cutting. In some embodiments, selective deposition is used to provide a portion of the patterning. In some embodiments the structural material or structural materials are bounded from below by a sacrificial bridging material (e.g. a metal) and possibly from above by a sacrificial capping material (e.g. a metal).
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: January 3, 2017
    Assignee: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Heath A. Jensen, Uri Frodis, Christopher G. Wiita, Michael S. Lockard, Irina Boguslavsky, Pavel Lembrikov, Dennis R. Smalley, Richard T. Chen
  • Patent number: 9441661
    Abstract: Embodiments of the invention provide threaded elements alone, in mating pairs, or in conjunction with other elements. Embodiments of the invention also provide for design and fabrication of such threaded elements without violating minimum feature size design rules or causing other interference issues that may result from the fabrication of such thread elements using a multi-layer multi-material electrochemical fabrication process.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: September 13, 2016
    Assignee: Microfabrica Inc.
    Inventors: Uri Frodis, Adam L. Cohen, Christopher R. Folk
  • Publication number: 20150308006
    Abstract: Numerous electrochemical fabrication methods and apparatus are provided for producing multi-layer structures (e.g. having meso-scale or micro-scale features) from a plurality of layers of deposited materials using adhered masks (e.g. formed from liquid photoresist or dry film), where two or more materials may be provided per layer where at least one of the materials is a structural material and one or more of any other materials may be a sacrificial material which will be removed after formation of the structure. Materials may comprise conductive materials that are electrodeposited or deposited in an electroless manner. In some embodiments special care is undertaken to ensure alignment between patterns formed on successive layers.
    Type: Application
    Filed: April 1, 2015
    Publication date: October 29, 2015
    Inventors: Adam L. Cohen, Jill R. Thomassian, Michael S. Lockard, Marvin M. Kilgo, III, Uri Frodis, Dennis R. Smalley
  • Publication number: 20150173788
    Abstract: The present invention relates generally to the field of micro-scale or millimeter scale devices and to the use of multi-layer multi-material electrochemical fabrication methods for producing such devices with particular embodiments relate to shredding devices and more particularly to shredding devices for use in medical applications. In some embodiments, tissue removal devices are used in procedures to removal spinal tissue and in other embodiments, similar devices are used to remove thrombus from blood vessel.
    Type: Application
    Filed: February 27, 2015
    Publication date: June 25, 2015
    Inventors: Michael S. LOCKARD, Uri FRODIS, Adam L. COHEN, Richard T. CHEN
  • Patent number: 8968346
    Abstract: The present invention relates generally to the field of micro-scale or millimeter scale devices and to the use of multi-layer multi-material electrochemical fabrication methods for producing such devices with particular embodiments relate to shredding devices and more particularly to shredding devices for use in medical applications. In some embodiments, tissue removal devices are used in procedures to removal spinal tissue and in other embodiments, similar devices are used to remove thrombus from blood vessel.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: March 3, 2015
    Assignee: Microfabrica Inc.
    Inventors: Michael S. Lockard, Uri Frodis, Adam L. Cohen, Richard T. Chen
  • Publication number: 20150021299
    Abstract: Embodiments are directed to forming three-dimensional millimeter scale or micro-scale structures from single or multiple sheets or layers of material via electro discharge machining (EDM). In some embodiments, the electrodes are formed by single layer or multi-layer, single material or multi-material deposition processes. In some embodiments single electrodes form a plurality of parts or structures simultaneously. In some embodiments a sacrificial bridging material is used to hold parts together during and after EDM processing.
    Type: Application
    Filed: July 16, 2014
    Publication date: January 22, 2015
    Inventors: Heath A. Jensen, Uri Frodis, Christopher G. Wiita, Michael S. Lockard
  • Publication number: 20140326607
    Abstract: Numerous electrochemical fabrication methods and apparatus are provided for producing multi-layer structures (e.g. having meso-scale or micro-scale features) from a plurality of layers of deposited materials using adhered masks (e.g. formed from liquid photoresist or dry film), where two or more materials may be provided per layer where at least one of the materials is a structural material and one or more of any other materials may be a sacrificial material which will be removed after formation of the structure. Materials may comprise conductive materials that are electrodeposited or deposited in an electroless manner. In some embodiments special care is undertaken to ensure alignment between patterns formed on successive layers.
    Type: Application
    Filed: March 10, 2014
    Publication date: November 6, 2014
    Inventors: Adam L. Cohen, Jill R. Thomassian, Michael S. Lockard, Marvin M. Kilgo, III, Uri Frodis, Dennis R. Smalley
  • Publication number: 20140238865
    Abstract: Electrochemical fabrication processes and apparatus for producing single layer or multi-layer structures where each layer includes the deposition of at least two materials and wherein the formation of at least some layers includes operations for reducing stress and/or curvature distortion when the structure is released from a sacrificial material which surrounded it during formation and possibly when released from a substrate on which it was formed. Six primary groups of embodiments are presented which are divide into eleven primary embodiments. Some embodiments attempt to remove stress to minimize distortion while others attempt to balance stress to minimize distortion.
    Type: Application
    Filed: February 28, 2014
    Publication date: August 28, 2014
    Inventors: Ananda H. Kumar, Jorge S. Alberron, Adam L. Cohen, Kieun Kim, Michael S. Lockard, Uri Frodis, Dennis R. Smalley
  • Publication number: 20140231263
    Abstract: Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
    Type: Application
    Filed: February 26, 2014
    Publication date: August 21, 2014
    Inventors: Uri Frodis, Adam L. Cohen, Michael S. Lockard
  • Patent number: 8808800
    Abstract: Electrochemical fabrication processes and apparatus for producing single layer or multi-layer structures where each layer includes the deposition of at least two materials and wherein the formation of at least some layers includes operations for reducing stress and/or curvature distortion when the structure is released from a sacrificial material which surrounded it during formation and possibly when released from a substrate on which it was formed. Six primary groups of embodiments are presented which are divide into eleven primary embodiments. Some embodiments attempt to remove stress to minimize distortion while others attempt to balance stress to minimize distortion.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: August 19, 2014
    Assignee: Microfabrica Inc.
    Inventors: Ananda H. Kumar, Jorge Sotelo Albarran, Adam L. Cohen, Kieun Kim, Michael S. Lockard, Uri Frodis, Dennis R. Smalley
  • Publication number: 20140209473
    Abstract: Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations.
    Type: Application
    Filed: February 20, 2014
    Publication date: July 31, 2014
    Inventors: Adam L. Cohen, Michael S. Lockard, Kieun Kim, Qui T. Le, Gang Zhang, Uri Frodis, Dale S. McPherson, Dennis R. Smalley
  • Publication number: 20140197145
    Abstract: Embodiments are directed to the formation micro-scale or millimeter scale structures or method of making such structures wherein the structures are formed from at least one sheet structural material and may include additional sheet structural materials or deposited structural materials wherein all or a portion of the patterning of the structural materials occurs via laser cutting. In some embodiments, selective deposition is used to provide a portion of the patterning. In some embodiments the structural material or structural materials are bounded from below by a sacrificial bridging material (e.g. a metal) and possibly from above by a sacrificial capping material (e.g. a metal).
    Type: Application
    Filed: January 15, 2014
    Publication date: July 17, 2014
    Inventors: Arun S. Veeramani, Heath A. Jensen, Uri Frodis, Christopher G. Wiita, Michael S. Lockard, Irina Boguslavsky, Pavel Lembrikov, Dennis R. Smalley, Richard T. Chen
  • Publication number: 20140140788
    Abstract: Embodiments of the invention provide threaded elements alone, in mating pairs, or in conjunction with other elements. Embodiments of the invention also provide for design and fabrication of such threaded elements without violating minimum feature size design rules or causing other interference issues that may result from the fabrication of such thread elements using a multi-layer multi-material electrochemical fabrication process.
    Type: Application
    Filed: October 15, 2013
    Publication date: May 22, 2014
    Inventors: Uri Frodis, III, Adam L. Cohen, Christopher R. Folk