Patents by Inventor Vage Oganesian

Vage Oganesian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8431435
    Abstract: A method of making a stacked microelectronic package by forming a microelectronic assembly by stacking a first subassembly including a plurality of microelectronic elements onto a second subassembly including a plurality of microelectronic elements, at least some of the plurality of microelectronic elements of said first subassembly and said second subassembly having traces that extend to respective edges of the microelectronic elements, then forming notches in the microelectronic assembly so as to expose the traces of at least some of the plurality of microelectronic elements, then forming leads at the side walls of the notches, the leads being in electrical communication with at least some of the traces and dicing the assembly into packages. Additional embodiments include methods for creating stacked packages using substrates and having additional traces that extend to both the top and bottom of the package.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: April 30, 2013
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Vage Oganesian
  • Patent number: 8426957
    Abstract: A stacked microelectronic assembly includes a first stacked subassembly and a second stacked subassembly overlying a portion of the first stacked subassembly. Each stacked subassembly includes at least a respective first microelectronic element having a face and a respective second microelectronic element having a face overlying and parallel to a face of the first microelectronic element. Each of the first and second microelectronic elements has edges extending away from the respective face. A plurality of traces at the respective face extend about at least one respective edge. Each of the first and second stacked subassemblies includes contacts connected to at least some of the plurality of traces. Bond wires conductively connect the contacts of the first stacked subassembly with the contacts of the second stacked subassembly.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: April 23, 2013
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Vage Oganesian
  • Patent number: 8405196
    Abstract: A microelectronic unit is provided in which front and rear surfaces of a semiconductor element may define a thin region which has a first thickness and a thicker region having a thickness at least about twice the first thickness. A semiconductor device may be present at the front surface, with a plurality of first conductive contacts at the front surface connected to the device. A plurality of conductive vias may extend from the rear surface through the thin region of the semiconductor element to the first conductive contacts. A plurality of second conductive contacts can be exposed at an exterior of the semiconductor element. A plurality of conductive traces may connect the second conductive contacts to the conductive vias.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: March 26, 2013
    Assignee: DigitalOptics Corporation Europe Limited
    Inventors: Belgacem Haba, Kenneth Allen Honer, David B. Tuckerman, Vage Oganesian
  • Publication number: 20130056844
    Abstract: An image sensor package includes a crystalline handler having opposing first and second surfaces, and a cavity formed into the first surface. At least one step extends from a sidewall of the cavity, wherein the cavity terminates in an aperture at the second surface. A cover is mounted to the second surface and extends over and covers the aperture. The cover is optically transparent to at least one range of light wavelengths. A sensor chip is disposed in the cavity and mounted to the at least one step. The sensor chip includes a substrate with front and back opposing surfaces, a plurality of photo detectors formed at the front surface, and a plurality of contact pads formed at the front surface which are electrically coupled to the photo detectors.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 7, 2013
    Inventor: Vage Oganesian
  • Publication number: 20130020665
    Abstract: An image sensor package includes an image sensor chip and crystalline handler. The image sensor chip includes a substrate, and a plurality of photo detectors and contact pads at the front surface of the substrate. The crystalline handler includes opposing first and second surfaces, and a cavity formed into the first surface. A compliant dielectric material is disposed in the cavity. The image sensor front surface is attached to the crystalline substrate handler second surface. A plurality of electrical interconnects each include a hole aligned with one of the contact pads, with a first portion extending from the second surface to the cavity and a second portion extending through the compliant dielectric material, a layer of insulation material formed along a sidewall of the first portion of the hole, and conductive material extending through the first and second portions of the hole and electrically coupled to the one contact pad.
    Type: Application
    Filed: July 19, 2011
    Publication date: January 24, 2013
    Inventor: Vage Oganesian
  • Publication number: 20130014978
    Abstract: Barrier layers for use in electrical applications. In some embodiments the barrier layer is a laminated barrier layer. In some embodiments the barrier layer includes a graded barrier layer.
    Type: Application
    Filed: July 15, 2011
    Publication date: January 17, 2013
    Applicant: Tessera, Inc.
    Inventors: Cyprian Uzoh, Vage Oganesian, Ilyas Mohammed, Belgacem Haba, Piyush Savalia, Craig Mitchell
  • Publication number: 20130010441
    Abstract: A microelectronic unit can include a carrier structure having a front surface, a rear surface remote from the front surface, and a recess having an opening at the front surface and an inner surface located below the front surface of the carrier structure. The microelectronic unit can also include a microelectronic element having a top surface adjacent the inner surface, a bottom surface remote from the top surface, and a plurality of contacts at the top surface. The microelectronic unit can also include terminals electrically connected with the contacts of the microelectronic element. The terminals can be electrically insulated from the carrier structure. The microelectronic unit can also include a dielectric region contacting at least the bottom surface of the microelectronic element. The dielectric region can define a planar surface located coplanar with or above the front surface of the carrier structure.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: TESSERA, INC.
    Inventors: Vage Oganesian, Belgacem Haba, Craig Mitchell, Ilyas Mohammed, Piyush Savalia
  • Publication number: 20120326326
    Abstract: Methods and apparatus for forming a semiconductor device are provided which may include any number of features. One feature is a method of forming an interconnect structure that results in the interconnect structure having a co-planar or flat top surface. Another feature is a method of forming an interconnect structure that results in the interconnect structure having a surface that is angled upwards greater than zero with respect to a top surface of the substrate. The interconnect structure can comprise a damascene structure, such as a single or dual damascene structure, or alternatively, can comprise a silicon-through via (TSV) structure.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 27, 2012
    Applicant: Tessera, Inc.
    Inventors: Cyprian Uzoh, Vage Oganesian, Ilyas Mohammed
  • Publication number: 20120326313
    Abstract: Methods of fabricating a multi-layer semiconductor device such as a multi-layer damascene or inverted multi-layer damascene structure using only a single or reduced number of exposure steps. The method may include etching a precursor structure formed of materials with differential removal rates for a given removal condition. The method may include removing material from a multi-layer structure under different removal conditions. Further disclosed are multi-layer damascene structures having multiple cavities of different sizes. The cavities may have smooth inner wall surfaces. The layers of the structure may be in direct contact. The cavities may be filled with a conducting metal or an insulator. Multi-layer semiconductor devices using the methods and structures are further disclosed.
    Type: Application
    Filed: June 27, 2011
    Publication date: December 27, 2012
    Applicant: Tessera, Inc.
    Inventors: Cyprian Uzoh, Vage Oganesian, Ilyas Mohammed, Craig Mitchell, Belgacem Haba
  • Publication number: 20120313255
    Abstract: A 3D interposer (and method of making same) that includes a crystalline substrate handler having opposing first and second surfaces, with a cavity formed into the first surface. A layer of insulation material is formed on the surface of the handler that defines the cavity. The cavity is filled with a compliant dielectric material. A plurality of electrical interconnects is formed through the interposer. Each electrical interconnect includes a first hole formed through the crystalline substrate handler extending from the second surface to the cavity, a second hole formed through the compliant dielectric material so as to extend from and be aligned with the first hole, a layer of insulation material formed along a sidewall of the first hole, and conductive material extending through the first and second holes.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 13, 2012
    Inventor: Vage Oganesian
  • Publication number: 20120313207
    Abstract: A microelectronic assembly for packaging/encapsulating IC devices, which includes a crystalline substrate handler having opposing first and second surfaces and a cavity formed into the first surface, a first IC device disposed in the cavity and a second IC device mounted to the second surface, and a plurality of interconnects formed through the crystalline substrate handler. Each of the interconnects includes a hole formed through the crystalline substrate handler from the first surface to the second surface, a compliant dielectric material disposed along the hole's sidewall, and a conductive material disposed along the compliant dielectric material and extending between the first and second surfaces. The compliant dielectric material insulates the conductive material from the sidewall. The second IC device, which can be an image sensor, is electrically coupled to the conductive materials of the plurality of interconnects. The first IC can be a processor for processing the signals from the image sensor.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 13, 2012
    Inventor: Vage Oganesian
  • Publication number: 20120313209
    Abstract: A microelectronic assembly and method of making, which includes a first microelectronic element (including a substrate with first and second opposing surfaces, a semiconductor device, and conductive pads at the first surface which are electrically coupled to the semiconductor device) and a second microelectronic element (including a handier with first and second opposing surfaces, a second semiconductor device, and conductive pads at the handler first surface which are electrically coupled to the second semiconductor device). The first and second microelectronic elements are integrated such that the second surfaces face each other. The first microelectronic element includes conductive elements each extending from one of its conductive pads, through the substrate to the second surface. The second microelectronic element includes conductive elements each extending between the handler first and second surfaces.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 13, 2012
    Inventor: Vage Oganesian
  • Patent number: 8310036
    Abstract: A microelectronic unit is provided in which front and rear surfaces of a semiconductor element may define a thin region which has a first thickness and a thicker region having a thickness at least about twice the first thickness. A semiconductor device may be present at the front surface, with a plurality of first conductive contacts at the front surface connected to the device. A plurality of conductive vias may extend from the rear surface through the thin region of the semiconductor element to the first conductive contacts. A plurality of second conductive contacts can be exposed at an exterior of the semiconductor element. A plurality of conductive traces may connect the second conductive contacts to the conductive vias.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: November 13, 2012
    Assignee: DigitalOptics Corporation Europe Limited
    Inventors: Belgacem Haba, Kenneth Allen Honer, David B. Tuckerman, Vage Oganesian
  • Publication number: 20120273933
    Abstract: A microelectronic assembly can include first, second and third stacked substantially planar elements, e.g., of dielectric or semiconductor material, and which may have a CTE of less than 10 ppm/° C. The assembly may be a microelectronic package and may incorporate active semiconductor devices in one, two or more of the first, second or third elements to function cooperatively as a system-in-a-package. In one example, an electrically conductive element having a minimum thickness less than 10 microns, may be formed by plating, and may electrically connect two or more of the first, second or third elements. The conductive element may entirely underlie a surface of another one of the substantially planar elements.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: TESSERA RESEARCH LLC
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Piyush Savalia, Craig Mitchell
  • Publication number: 20120199926
    Abstract: A microelectronic image sensor assembly for backside illumination and method of making same are provided. The assembly includes a microelectronic element having contacts exposed at a front face and light sensing elements arranged to receive light of different wavelengths through a rear face. A semiconductor region has a first thickness between the first light sensing element and the rear face and a second thickness between the second light sensing element and the rear face such that the first and second light sensing elements receive light of substantially the same intensity. A dielectric region is provided at least substantially filling a space of the semiconductor region adjacent at least one of the light sensing elements. The dielectric region may include at least one light guide.
    Type: Application
    Filed: May 24, 2011
    Publication date: August 9, 2012
    Applicant: TESSERA NORTH AMERICA, INC
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Piyush Savalia, Craig Mitchell
  • Publication number: 20120199924
    Abstract: A microelectronic image sensor assembly for backside illumination and method of making same are provided. The assembly includes a microelectronic element having contacts exposed at a front face and light sensing elements arranged to receive light of different wavelengths through a semiconductor region adjacent a rear face. The semiconductor region has a first region of material overlying the first light sensing element and a second region of material overlying the second light sensing element such that the first and second wavelengths are able to pass through the first and second regions, respectively, and reach the first and second light sensing elements with substantially the same intensity.
    Type: Application
    Filed: February 3, 2011
    Publication date: August 9, 2012
    Applicant: TESSERA RESEARCH LLC
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Piyush Savalia, Craig Mitchell
  • Publication number: 20120199925
    Abstract: A microelectronic image sensor assembly for backside illumination and method of making same are provided. The assembly includes a microelectronic element having contacts exposed at a front face and light sensing elements arranged to receive light of different wavelengths through a rear face. A semiconductor region has an opening overlying at least one of first and second light sensing elements, the semiconductor region having a first thickness between the first light sensing element and the rear face and a second thickness between the second light sensing element and the rear face. A light-absorbing material overlies the semiconductor region within the opening above at least one of the light sensing elements such that the first and second light sensing elements receive light of substantially the same intensity.
    Type: Application
    Filed: May 19, 2011
    Publication date: August 9, 2012
    Applicant: TESSERA NORTH AMERICA, INC.
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Piyush Savalia, Craig Mitchell
  • Publication number: 20120181658
    Abstract: A capacitor can include a substrate having a first surface, a second surface remote from the first surface, and a through opening extending between the first and second surfaces, first and second metal elements, and a capacitor dielectric layer separating and insulating the first and second metal elements from one another at least within the through opening. The first metal element can be exposed at the first surface and can extend into the through opening. The second metal element can be exposed at the second surface and can extend into the through opening. The first and second metal elements can be electrically connectable to first and second electric potentials. The capacitor dielectric layer can have an undulating shape.
    Type: Application
    Filed: July 14, 2011
    Publication date: July 19, 2012
    Applicant: TESSERA RESEARCH LLC
    Inventors: Ilyas Mohammed, Belgacem Haba, Cyprian Uzoh, Piyush Savalia, Vage Oganesian
  • Publication number: 20120153426
    Abstract: A method of bonding first and second microelectronic elements includes pressing together a first substrate containing active circuit elements therein with a second substrate, with a flowable dielectric material between confronting surfaces of the respective substrates, each of the first and second substrates having a coefficient of thermal expansion less than 10 parts per million/° C., at least one of the confronting surfaces having a plurality of channels extending from an edge of such surface, such that the dielectric material between planes defined by the confronting surfaces is at least substantially free of voids and has a thickness over one micron, and at least some of the dielectric material flows into at least some of the channels.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 21, 2012
    Applicant: TESSERA RESEARCH LLC
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Piyush Savalia, Craig Mitchell
  • Publication number: 20120153443
    Abstract: A chip-sized, wafer level packaged device including a portion of a semiconductor wafer including a device, at least one packaging layer containing silicon and formed over the device, a first ball grid array formed over a surface of the at least one packaging layer and being electrically connected to the device and a second ball grid array formed over a surface of the portion of the semiconductor wafer and being electrically connected to the device.
    Type: Application
    Filed: February 28, 2012
    Publication date: June 21, 2012
    Applicant: TESSERA, INC.
    Inventors: Andrey Grinman, David Ovrutsky, Charles Rosenstein, Vage Oganesian