Patents by Inventor Vage Oganesian

Vage Oganesian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090160065
    Abstract: A stacked microelectronic assembly is fabricated from a structure which includes a plurality of first microelectronic elements having front faces bonded to a carrier. Each first microelectronic element may have a first edge and a plurality of first traces extending along the front face towards the first edge. After exposing at least a portion of the first traces, a dielectric layer is formed over the plurality of first microelectronic elements. After thinning the dielectric layer, a plurality of second microelectronic elements are aligned and joined with the structure such that front faces of the second microelectronic elements are facing the rear faces of the plurality of first microelectronic elements. Processing is repeated to form the desirable number of layers of microelectronic elements. In one embodiment, the stacked layers of microelectronic elements may be notched at dicing lines to expose edges of traces, which may then be electrically connected to leads formed in the notches.
    Type: Application
    Filed: June 20, 2008
    Publication date: June 25, 2009
    Applicant: Tessera, Inc.
    Inventors: Belgacem Haba, llyas Mohammed, Vage Oganesian, David Ovrutsky, Laura Wills Mirkarimi
  • Publication number: 20090115047
    Abstract: An interconnect element 130 can include a dielectric layer 116 having a top face 116b and a bottom face 116a remote from the top face, a first metal layer defining a plane extending along the bottom face and a second metal layer extending along the top face. One of the first or second metal layers, or both, can include a plurality of conductive traces 132, 134. A plurality of conductive protrusions 112 can extend upwardly from the plane defined by the first metal layer 102 through the dielectric layer 116. The conductive protrusions 112 can have top surfaces 126 at a first height 115 above the first metal layer 132 which may be more than 50% of a height of the dielectric layer. A plurality of conductive vias 128 can extend from the top surfaces 126 of the protrusions 112 to connect the protrusions 112 with the second metal layer.
    Type: Application
    Filed: October 8, 2008
    Publication date: May 7, 2009
    Applicant: Tessera, Inc.
    Inventors: Belgacem Haba, Vage Oganesian, Kimitaka Endo
  • Patent number: 7495341
    Abstract: An integrally packaged integrated circuit device including an integrated circuit die including a crystalline substrate having first and second generally planar surfaces and edge surfaces and semiconductor circuitry formed over the first generally planar surface, at least one chip scale packaging layer formed over the semiconductor circuitry and the first generally planar surface, an insulation layer formed over the second generally planar surface and the edge surfaces and at least one electrical conductor formed directly on the insulation layer overlying the second generally planar surface, the at least one electrical conductor being connected to the circuitry by at least one pad formed directly on the first generally planar surface.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: February 24, 2009
    Assignee: Tessera Technologies Hungary Kft.
    Inventors: Gil Zilber, Julia Aksenton, Vage Oganesian
  • Patent number: 7479398
    Abstract: An integrally packaged integrated circuit device including an integrated circuit die including a crystalline substrate having first and second generally planar surfaces and edge surfaces and semiconductor circuitry formed over the first generally planar surface, at least one chip scale packaging layer formed over the semiconductor circuitry and the first generally planar surface, an insulation layer formed over the second generally planar surface and the edge surfaces and at least one electrical conductor formed directly on the insulation layer overlying the second generally planar surface, the at least one electrical conductor being connected to the circuitry by at least one pad formed directly on the first generally planar surface.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: January 20, 2009
    Assignee: Tessera Technologies Hungary Kft.
    Inventors: Gil Zilber, Julia Aksenton, Vage Oganesian
  • Publication number: 20080246136
    Abstract: A microelectronic unit is provided in which front and rear surfaces of a semiconductor element may define a thin region which has a first thickness and a thicker region having a thickness at least about twice the first thickness. A semiconductor device may be present at the front surface, with a plurality of first conductive contacts at the front surface connected to the device. A plurality of conductive vias may extend from the rear surface through the thin region of the semiconductor element to the first conductive contacts. A plurality of second conductive contacts can be exposed at an exterior of the semiconductor element. A plurality of conductive traces may connect the second conductive contacts to the conductive vias.
    Type: Application
    Filed: February 26, 2008
    Publication date: October 9, 2008
    Applicant: Tessera, Inc.
    Inventors: Belgacem Haba, Kenneth Allen Honer, David B. Tuckerman, Vage Oganesian
  • Publication number: 20080150121
    Abstract: A method of making a microelectronic assembly includes providing a semiconductor wafer having contacts accessible at a first surface, forming compliant bumps over the first surface and depositing a sacrificial layer over the compliant bumps. The method includes grinding the sacrificial layer and the compliant bumps so as to planarize top surfaces of the compliant bumps, whereby the planarized top surfaces are accessible through said sacrificial layer. The sacrificial layer is removed to expose the compliant bumps and the contacts. A silicone layer is deposited over the compliant bumps and portions of the silicone layer are removed to expose the contacts accessible at the first surface of the semiconductor wafer. Conductive traces are formed having first ends electrically connected with the contacts and second ends overlying the compliant bumps and conductive elements are provided atop the second ends of the traces.
    Type: Application
    Filed: December 20, 2006
    Publication date: June 26, 2008
    Applicant: Tessera Technologies Hungary Kft.
    Inventors: Vage Oganesian, Guilian Gao, Belgacem Haba, David Ovrutsky
  • Publication number: 20080116545
    Abstract: A chip-sized wafer level packaged device including a portion of a semiconductor wafer including a device, a packaging layer formed over the portion of the semiconductor wafer, the packaging layer including a material having thermal expansion characteristics similar to those of the semiconductor wafer and a ball grid array formed over a surface of the packaging layer and being electrically connected to the device.
    Type: Application
    Filed: November 22, 2006
    Publication date: May 22, 2008
    Applicant: Tessera, Inc.
    Inventors: Andrey Grinman, David Ovrutsky, Charles Rosenstein, Belgacem Haba, Vage Oganesian
  • Publication number: 20080116544
    Abstract: A chip-sized, wafer level packaged device including a portion of a semiconductor wafer including a device, at least one packaging layer containing silicon and formed over the device, a first ball grid array formed over a surface of the at least one packaging layer and being electrically connected to the device and a second ball grid array formed over a surface of the portion of the semiconductor wafer and being electrically connected to the device.
    Type: Application
    Filed: November 22, 2006
    Publication date: May 22, 2008
    Applicant: Tessera, Inc.
    Inventors: Andrey Grinman, David Ovrutsky, Charles Rosenstein, Vage Oganesian
  • Publication number: 20080099900
    Abstract: A method is provided for fabricating a unit including a semiconductor element such as a sensor unit, e.g., for optical imaging. A semiconductor element has plurality of conductive features exposed at the front surface and semiconductive or conductive material exposed at least one of the front and rear surfaces. At least some of the conductive features are insulated from the exposed semiconductive or conductive material. By electrodeposition, an insulative layer is formed to overlie the at least one of exposed semiconductive material or conductive material. Subsequently, a plurality of conductive contacts and a plurality of conductive traces are formed overlying the electrodeposited insulative layer, the conductive traces connecting the conductive features to the conductive contacts. The unit can be incorporated in a camera module having an optical element in registration with an imaging area of the semiconductor element.
    Type: Application
    Filed: October 31, 2006
    Publication date: May 1, 2008
    Applicant: Tessera Technologies Hungary Kft.
    Inventors: Vage Oganesian, David Ovrutsky, Charles Rosenstein, Belgacem Haba, Giles Humpston
  • Publication number: 20080099907
    Abstract: A method is provided for fabricating a unit including a semiconductor element such as a sensor unit, e.g., for optical imaging. A semiconductor element has plurality of conductive features exposed at the front surface and semiconductive or conductive material exposed at at least one of the front and rear surfaces. At least some of the conductive features are insulated from the exposed semiconductive or conductive material. By electrodeposition, an insulative layer is formed to overlie the at least one of exposed semiconductive material or conductive material. Subsequently, a plurality of conductive contacts and a plurality of conductive traces are formed overlying the electrodeposited insulative layer, the conductive traces connecting the conductive features to the conductive contacts on the rear surface. The unit can be incorporated in a camera module having an optical element in registration with an imaging area of the semiconductor element.
    Type: Application
    Filed: April 25, 2007
    Publication date: May 1, 2008
    Applicant: Tessera Technologies Hungary Kft.
    Inventors: Vage Oganesian, Andrey Grinman, Charles Rosenstein, Felix Hazanovich, David Ovrutsky, Avi Dayan, Yulia Aksenton, Ilya Hecht
  • Publication number: 20080083977
    Abstract: In accordance with an aspect of the invention, a stacked microelectronic package is provided which may include a plurality of subassemblies, e.g., a first subassembly and a second subassembly underlying the first subassembly. A front face of the second subassembly may confront the rear face of the first subassembly. Each of the first and second subassemblies may include a plurality of front contacts exposed at the front face, at least one edge and a plurality of front traces extending about the respective at least one edge. The second subassembly may have a plurality of rear contacts exposed at the rear face. The second subassembly may also have a plurality of rear traces extending from the rear contacts about the at least one edge. The rear traces may extend to at least some of the plurality of front contacts of at least one of the first or second subassemblies.
    Type: Application
    Filed: April 13, 2007
    Publication date: April 10, 2008
    Applicant: Tessera, Inc.
    Inventors: Belgacem Haba, Vage Oganesian
  • Publication number: 20080083976
    Abstract: A method of making a stacked microelectronic package by forming a microelectronic assembly by stacking a first subassembly including a plurality of microelectronic elements onto a second subassembly including a plurality of microelectronic elements, at least some of the plurality of microelectronic elements of said first subassembly and said second subassembly having traces that extend to respective edges of the microelectronic elements, then forming notches in the microelectronic assembly so as to expose the traces of at least some of the plurality of microelectronic elements, then forming leads at the side walls of the notches, the leads being in electrical communication with at least some of the traces and dicing the assembly into packages. Additional embodiments include methods for creating stacked packages using substrates and having additional traces that extend to both the top and bottom of the package.
    Type: Application
    Filed: February 9, 2007
    Publication date: April 10, 2008
    Applicant: Tessera, Inc.
    Inventors: Belgacem Haba, Vage Oganesian
  • Publication number: 20080017879
    Abstract: An integrally packaged integrated circuit device including an integrated circuit die including a crystalline substrate having first and second generally planar surfaces and edge surfaces and semiconductor circuitry formed over the first generally planar surface, at least one chip scale packaging layer formed over the semiconductor circuitry and the first generally planar surface, an insulation layer formed over the second generally planar surface and the edge surfaces and at least one electrical conductor formed directly on the insulation layer overlying the second generally planar surface, the at least one electrical conductor being connected to the circuitry by at least one pad formed directly on the first generally planar surface.
    Type: Application
    Filed: August 21, 2007
    Publication date: January 24, 2008
    Applicant: Tessera Technologies Hungary Kft.
    Inventors: Gil Zilber, Julia Aksenton, Vage Oganesian
  • Publication number: 20080012115
    Abstract: An integrally packaged integrated circuit device including an integrated circuit die including a crystalline substrate having first and second generally planar surfaces and edge surfaces and an active surface formed on the first generally planar surface, at least one chip scale packaging layer formed over the active surface and at least one electrical contact formed over the at least one chip scale packaging layer, the at least one electrical contact being connected to circuitry on the active surface by at least one pad formed on the first generally planar surface.
    Type: Application
    Filed: August 13, 2007
    Publication date: January 17, 2008
    Applicant: Tessera Technologies Hungary Kft.
    Inventors: Gil Zilber, Reuven Katraro, Julia Aksenton, Vage Oganesian
  • Patent number: 7265440
    Abstract: An integrally packaged integrated circuit device including an integrated circuit die including a crystalline substrate having first and second generally planar surfaces and edge surfaces and an active surface formed on the first generally planar surface, at least one chip scale packaging layer formed over the active surface and at least one electrical contact formed over the at least one chip scale packaging layer, the at least one electrical contact being connected to circuitry on the active surface by at least one pad formed on the first generally planar surface.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: September 4, 2007
    Assignee: Tessera Technologies Hungary Kft.
    Inventors: Gil Zilber, Reuven Katraro, Julia Aksenton, Vage Oganesian
  • Publication number: 20070190747
    Abstract: Methods are provided for making a plurality of lidded microelectronic elements. In an exemplary embodiment, a lid wafer is assembled with a device wafer. Desirably, the lid wafer is severed into a plurality of lid elements to remove portions of the lid wafer overlying contacts at a front face of the device wafer adjacent to dicing lanes of the device wafer. Thereafter, desirably, the device wafer is severed along the dicing lanes to provide a plurality of lidded microelectronic elements.
    Type: Application
    Filed: January 19, 2007
    Publication date: August 16, 2007
    Applicant: Tessera Technologies Hungary Kft.
    Inventors: Giles Humpston, Michael Nystrom, Vage Oganesian, Yulia Aksenton, Osher Avsian, Robert Burtzlaff, Avi Dayan, Andrey Grinman, Felix Hazanovich, Ilya Hecht, Charles Rosenstein, David Ovrutsky
  • Publication number: 20070190691
    Abstract: Packaged microelectronic elements are provided. In an exemplary embodiment, a microelectronic element having a front face and a plurality of peripheral edges bounding the front face has a device region at the front face and a contact region with a plurality of exposed contacts adjacent to at least one of the peripheral edges. The packaged element may include a plurality of support walls overlying the front face of the microelectronic element such that a lid can be mounted to the support walls above the microelectronic element. For example, the lid may have an inner surface confronting the front face. In a particular embodiment, some of the contacts can be exposed beyond edges of the lid.
    Type: Application
    Filed: January 19, 2007
    Publication date: August 16, 2007
    Applicant: Tessera Technologies Hungary Kft.
    Inventors: Giles Humpston, Michael Nystrom, Vage Oganesian, Yulia Aksenton, Osher Avsian, Robert Burtzlaff, Avi Dayan, Andrey Grinman, Felix Hazanovich, Ilya Hecht, Charles Rosenstein, David Ovrutsky, Mitchell Reifel
  • Publication number: 20070138498
    Abstract: An integrally packaged integrated circuit device including an integrated circuit die including a crystalline substrate having first and second generally planar surfaces and edge surfaces and semiconductor circuitry formed over the first generally planar surface, at least one chip scale packaging layer formed over the semiconductor circuitry and the first generally planar surface, an insulation layer formed over the second generally planar surface and the edge surfaces and at least one electrical conductor formed directly on the insulation layer overlying the second generally planar surface, the at least one electrical conductor being connected to the circuitry by at least one pad formed directly on the first generally planar surface.
    Type: Application
    Filed: January 30, 2007
    Publication date: June 21, 2007
    Applicant: Tessera Technologies Hungary Kft.
    Inventors: Gil Zilber, Julia Aksenton, Vage Oganesian
  • Patent number: 7192796
    Abstract: An integrally packaged integrated circuit device including an integrated circuit die including a crystalline substrate having first and second generally planar surfaces and edge surfaces and semiconductor circuitry formed over the first generally planar surface, at least one chip scale packaging layer formed over the semiconductor circuitry and the first generally planar surface, an insulation layer formed over the second generally planar surface and the edge surfaces and at least one electrical conductor formed directly on the insulation layer overlying the second generally planar surface, the at least one electrical conductor being connected to the circuitry by at least one pad formed directly on the first generally planar surface.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: March 20, 2007
    Assignee: Tessera Technologies Hungary Kft.
    Inventors: Gil Zilber, Julia Aksenton, Vage Oganesian
  • Patent number: 6972480
    Abstract: An integrally packaged integrated circuit device including an integrated circuit die including a crystalline substrate having first and second generally planar surfaces and edge surfaces and an active surface formed on the first generally planar surface, at least one chip scale packaging layer formed over the active surface and at least one electrical contact formed over the at least one chip scale packaging layer, the at least one electrical contact being connected to circuitry on the active surface by at least one pad formed on the first generally planar surface.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: December 6, 2005
    Assignee: Shellcase Ltd.
    Inventors: Gil Zilber, Reuven Katraro, Julia Aksenton, Vage Oganesian