Patents by Inventor Varughese Mathew

Varughese Mathew has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8853867
    Abstract: A mold compound is provided for encapsulating a semiconductor device (101). The mold compound comprises at least approximately 70% by weight silica fillers, at least approximately 10% by weight epoxy resin system, and beneficial ions that are beneficial with respect to copper ball bond corrosion. A total level of the beneficial ions in the mold compound is at least approximately 100 ppm.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: October 7, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sheila F. Chopin, Varughese Mathew, Leo M. Higgins, III, Chu-Chung Lee
  • Patent number: 8836110
    Abstract: A packaged semiconductor device includes a package substrate, an integrated circuit (IC) die mounted on the package substrate, and a heat spreader mounted on the package substrate. The heat spreader surrounds at least a portion of the IC die and includes a lid with a plurality of openings. An inner portion of the heat spreader includes a plurality of thermally conductive protrusions adjacent the die.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: September 16, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sheila F. Chopin, Varughese Mathew
  • Publication number: 20140145339
    Abstract: A mold compound is provided for encapsulating a semiconductor device (101). The mold compound comprises at least approximately 70% by weight silica fillers, at least approximately 10% by weight epoxy resin system, and beneficial ions that are beneficial with respect to copper ball bond corrosion. A total level of the beneficial ions in the mold compound is at least approximately 100 ppm.
    Type: Application
    Filed: January 31, 2014
    Publication date: May 29, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Sheila F. CHOPIN, Varughese MATHEW, Leo M. HIGGINS, III, Chu-Chung LEE
  • Publication number: 20140061894
    Abstract: A packaged semiconductor device, comprising a package substrate, an integrated circuit (IC) die mounted on the package substrate, and a heat spreader mounted on the package substrate. The heat spreader surrounds at least a portion of the IC die and includes a lid with a plurality of openings. An inner portion of the heat spreader includes a plurality of thermally conductive protrusions adjacent the die.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Sheila F. Chopin, Varughese Mathew
  • Patent number: 8643197
    Abstract: A mold compound is provided for encapsulating a semiconductor device (101). The mold compound comprises at least approximately 70% by weight silica fillers, at least approximately 10% by weight epoxy resin system, and beneficial ions that are beneficial with respect to copper ball bond corrosion. A total level of the beneficial ions in the mold compound is at least approximately 100 ppm.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: February 4, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sheila F. Chopin, Varughese Mathew, Leo M. Higgins, III, Chu-Chung Lee
  • Publication number: 20130319129
    Abstract: A technique for testing the compatibility of an encapsulation material and a wire bond included at an unencapsulated assembly. The technique includes immersing the assembly in an encapsulating compound extract. The assembly includes a semiconductor die and a bonding wire affixed to a metalized pad of the semiconductor die by the wire bond. After the immersing, a mechanical strength of the wire bond is determined.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Varughese Mathew, Sheila F. Chopin, Leo M. Higgins, III
  • Patent number: 8586474
    Abstract: A method for forming a via, comprising (a) providing a structure comprising a mask (210) disposed on a semiconductor substrate (203), wherein the structure has an opening (215) defined therein which extends through the mask and into the substrate, and wherein the mask comprises a first electrically conductive layer; (b) depositing a second electrically conductive layer (219) such that the second conductive layer is in electrical contact with the first conductive layer, the second conductive layer having a first portion which extends over the surfaces of the opening and a second portion which extends over a portion of the mask adjacent to the opening; (c) removing the second portion of the second conductive layer; and (d) depositing a first metal (221) over the first portion of the second conductive layer.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: November 19, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ritwik Chatterjee, Eddie Acosta, Sam S. Garcia, Varughese Mathew
  • Publication number: 20130193576
    Abstract: A packaged electronic device including an electronic device, a conductive structure, and an encapsulant. The encapsulant has chlorides and a negatively-charged corrosion inhibitor for preventing corrosion of the conductive structure.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 1, 2013
    Inventor: Varughese Mathew
  • Patent number: 8394713
    Abstract: A semiconductor device structure has a semiconductor die that has a bond pad with a passivation layer surrounding a portion of the bond pad. A nickel layer, which is deposited, is on the inner portion. A space is between a sidewall of the nickel layer and the passivation layer and extends to the bond pad. A palladium layer is over the nickel layer and fills the space. The space is initially quite small but is widened by an isotropic etch so that when the palladium layer is deposited, the space is sufficiently large so that the deposition of palladium is able to fill the space. Filling the space results in a structure in which the palladium contacts the nickel layer, the passivation layer and the bond pad.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: March 12, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Varughese Mathew
  • Patent number: 8168468
    Abstract: A method for making a semiconductor device (10) includes providing an interconnect layer (14) over an underlying layer (12), forming a first insulating layer (16) over the interconnect layer, and forming an opening (18) through the insulating layer to the interconnect layer. A first conductive layer (24) is formed over the interconnect layer and in the opening. This is performed by plating so it is selective. A second conductive layer (28) in the opening is formed by displacement by immersion. This is performed after the first conductive layer has been formed. The result is the second conductive layer is formed by a selective deposition and is effective for providing it with bridging material. A layer of bridgeable material (34) is formed over the second conductive layer and in the opening. A third conductive layer (42) is formed over the bridgeable material. The semiconductor device may be useable as a conductive bridge memory device.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: May 1, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Varughese Mathew, Sam S. Garcia, Tushar P. Merchant
  • Publication number: 20110299909
    Abstract: Self hair coloring made simple & easy with the new design of the Easy color hair brush. Easy color hair brush has the look & feel of a conventional paddle brush. The head of the color brush is a container to hold one full application with an easy fill cap, the squeezable handle pumps the right amount of hair color with no mess, and each pins at the bottom have 2 holes each at different levels for maximum coverage. The easy color hair brush is easy to clean and is reusable.
    Type: Application
    Filed: August 18, 2010
    Publication date: December 8, 2011
    Inventor: Varughese Mathew Madappattu
  • Patent number: 8003517
    Abstract: A method for forming an interconnect, comprising (a) providing a substrate (203) with a via (205) defined therein; (b) forming a seed layer (211) such that a first portion of the seed layer extends over a surface of the via, and a second portion of the seed layer extends over a portion of the substrate; (c) removing the second portion of the seed layer; and (d) depositing a metal (215) over the first portion of the seed layer by an electroless process.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: August 23, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Varughese Mathew, Eddie Acosta, Ritwik Chatterjee, Sam S. Garcia
  • Publication number: 20110198751
    Abstract: A semiconductor device structure has a semiconductor die that has a bond pad with a passivation layer surrounding a portion of the bond pad. A nickel layer, which is deposited, is on the inner portion. A space is between a sidewall of the nickel layer and the passivation layer and extends to the bond pad. A palladium layer is over the nickel layer and fills the space. The space is initially quite small but is widened by an isotropic etch so that when the palladium layer is deposited, the space is sufficiently large so that the deposition of palladium is able to fill the space. Filling the space results in a structure in which the palladium contacts the nickel layer, the passivation layer and the bond pad.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 18, 2011
    Inventor: Varughese Mathew
  • Patent number: 7993971
    Abstract: A method for forming a semiconductor structure includes forming a first contact pad on a first die, wherein the first contact pad comprises a first metal element, forming a metal over the first contact pad, wherein the metal comprises a second metal element, and the second metal element is different from the first metal element. The method further includes rapidly reflowing a portion of the metal to form a thin intermetallic layer. The method further includes attaching the first contact pad of the first die to a second contact pad of a second die, wherein attaching comprises heating the first contact pad and the second contact pad to reflow the metal to form an intermetallic layer such that substantially all of the metal formed over the first contact pad is used as part of the intermetallic layer.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: August 9, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ritwik Chatterjee, Eddic Acosta, Varughese Mathew
  • Publication number: 20110151663
    Abstract: A method for forming a via, comprising (a) providing a structure comprising a mask (210) disposed on a semiconductor substrate (203), wherein the structure has an opening (215) defined therein which extends through the mask and into the substrate, and wherein the mask comprises a first electrically conductive layer; (b) depositing a second electrically conductive layer (219) such that the second conductive layer is in electrical contact with the first conductive layer, the second conductive layer having a first portion which extends over the surfaces of the opening and a second portion which extends over a portion of the mask adjacent to the opening; (c) removing the second portion of the second conductive layer; and (d) depositing a first metal (221) over the first portion of the second conductive layer.
    Type: Application
    Filed: March 4, 2011
    Publication date: June 23, 2011
    Inventors: Ritwik Chatterjee, Eddie Acosta, Sam S. Garcia, Varughese Mathew
  • Patent number: 7932175
    Abstract: A method for forming a via, comprising (a) providing a structure comprising a mask (210) disposed on a semiconductor substrate (203), wherein the structure has an opening (215) defined therein which extends through the mask and into the substrate, and wherein the mask comprises a first electrically conductive layer; (b) depositing a second electrically conductive layer (219) such that the second conductive layer is in electrical contact with the first conductive layer, the second conductive layer having a first portion which extends over the surfaces of the opening and a second portion which extends over a portion of the mask adjacent to the opening; (c) removing the second portion of the second conductive layer; and (d) depositing a first metal (221) over the first portion of the second conductive layer.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: April 26, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ritwik Chatterjee, Eddie Acosta, Sam S. Garcia, Varughese Mathew
  • Patent number: 7807572
    Abstract: A method forms a micropad to an external contact of a first semiconductor device. A stud of copper is formed over the external contact. The stud extends above a surface of the first semiconductor device. The stud of copper is immersed in a solution of tin. The tin replaces at least 95 percent of the copper of the stud and preferably more than 99 percent. The result is a tin micropad that has less than 5 percent copper by weight. Since the micropad is substantially pure tin, intermetallic bonds will not form during the time while the micropads of the first semiconductor device are not bonded. Smaller micropad dimensions result since intermetallic bonds do not form. When the first semiconductor device is bonded to an overlying second semiconductor device, the bond dimensions do not significantly increase the height of stacked chips.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: October 5, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Varughese Mathew, Eddie Acosta, Ritwik Chatterjee, Sam S. Garcia
  • Patent number: 7717060
    Abstract: An electroless metal deposition process to make a semiconductor device uses a plating bath solution having a reducing agent. A sample of the bath solution is taken and the pH of the sample is increased. The hydrogen evolved from the sample is measured. The hydrogen evolved is used to determine the concentration of the reducing agent present in the sample. Based on the determined reducing agent concentration, the plating bath solution is modified.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: May 18, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Steven M. Hues, Michael L. Lovejoy, Varughese Mathew
  • Publication number: 20090218567
    Abstract: A method for making a semiconductor device (10) includes providing an interconnect layer (14) over an underlying layer (12), forming a first insulating layer (16) over the interconnect layer, and forming an opening (18) through the insulating layer to the interconnect layer. A first conductive layer (24) is formed over the interconnect layer and in the opening. This is performed by plating so it is selective. A second conductive layer (28) in the opening is formed by displacement by immersion. This is performed after the first conductive layer has been formed. The result is the second conductive layer is formed by a selective deposition and is effective for providing it with bridging material. A layer of bridgeable material (34) is formed over the second conductive layer and in the opening. A third conductive layer (42) is formed over the bridgeable material. The semiconductor device may be useable as a conductive bridge memory device.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 3, 2009
    Inventors: Varughese Mathew, Sam S. Garcia, Tushar P. Merchant
  • Patent number: 7572723
    Abstract: A semiconductor process is taught for performing electroless plating of copper overlying at least a portion of a layer comprising cobalt, nickel, or both cobalt and nickel. The cobalt and/or nickel comprising layer may be formed using electroless plating. For some embodiments, a tin layer is then formed overlying the copper. The tin layer may be formed using immersion plating or electroless plating. A micropad may comprise the cobalt and/or nickel comprising layer and the copper layer. In some embodiments, the micropad may also comprise the tin layer. In one embodiment, the micropad may be compressed at an elevated temperature to form a copper tin intermetallic compound which provides an interconnect between a plurality of semiconductor devices.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: August 11, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Varughese Mathew, Eddie Acosta, Ritwik Chatterjee, Sam S. Garcia