Patents by Inventor Vijay Parihar

Vijay Parihar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7438468
    Abstract: A thermal processing system includes a source of laser radiation emitting at a laser wavelength, beam projection optics disposed between the reflective surface and a substrate support capable of holding a substrate to be processed, a pyrometer responsive to a pyrometer wavelength, and a wavelength responsive optical element having a first optical path for light in a first wavelength range including the laser wavelength, the first optical path being between the source of laser radiation and the beam projection optics, and a second optical path for light in a second wavelength range including the pyrometer wavelength, the second optical path being between the beam projection optics and the pyrometer. The system can further include a pyrometer wavelength blocking filter between the source of laser radiation and the wavelength responsive optical element.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: October 21, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Dean Jennings, Aaron M. Hunter, Abhilash J. Mayur, Vijay Parihar, Timothy N. Thomas
  • Patent number: 7429532
    Abstract: A method of processing a thin film structure on a semiconductor substrate using an optically writable mask, the method includes placing the substrate in a reactor chamber, the substrate having on its surface a target layer to be exposed to a light source in accordance with a predetermined pattern, depositing an optically writable carbon-containing mask layer on the substrate by (a) introducing a carbon-containing process gas into the chamber, (b) generating a reentrant toroidal RF plasma current in a reentrant path that includes a process zone overlying the workpiece by coupling plasma RF source power to an external portion of the reentrant path, (c) coupling RF plasma bias power or bias voltage to the workpiece.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: September 30, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Hiroji Hanawa, Biagio Gallo, Kenneth S. Collins, Kai Ma, Vijay Parihar, Dean Jennings, Abhilash J. Mayur, Amir Al-Bayati, Andrew Nguyen
  • Publication number: 20080217306
    Abstract: A system for thermal processing of a substrate includes a source of radiation, optics disposed between the source and the substrate to receive light from the source of radiation at the optics proximate end, and a housing holding the optics and having a void inside the housing isolated from light emitted from the source. A light detector is disposed within the void in the housing to detect light from the optics emitted into the housing and send a deterioration signal. The system further includes a power supply for the source of radiation, and a controller to control the power supply based on the deterioration signal from the light detector.
    Type: Application
    Filed: March 12, 2008
    Publication date: September 11, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Dean Jennings, Aaron Muir Hunter, Abhilash J. Mayur, Vijay Parihar
  • Patent number: 7422775
    Abstract: A method of processing a workpiece includes introducing an optical absorber material precursor gas into a chamber containing the workpiece, generating an RF oscillating toroidal plasma current in a reentrant path that includes a process zone overlying the workpiece by applying RF source power, so as to deposit a layer of an optical absorber material on the workpiece, and exposing the workpiece to optical radiation that is at least partially absorbed in the optical absorber layer.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: September 9, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Hiroji Hanawa, Biagio Gallo, Kenneth S. Collins, Kai Ma, Vijay Parihar, Dean Jennings, Abhilash J. Mayur, Amir Al-Bayati, Andrew Nguyen
  • Patent number: 7422988
    Abstract: A thermal processing system includes a source of laser radiation having an array of lasers emitting light at a laser wavelength, a substrate support, optics disposed between said source and said substrate support for forming a line beam in a substrate plane of the substrate support from the light emitted by the source of laser radiation, and scanning apparatus for effecting movement of said line beam relative to said substrate support in a direction transverse to the longitudinal axis of said line beam. The system further includes a housing encompassing said optics, a light detector disposed inside said housing for sensing an ambient light level, a power supply coupled to the source of laser radiation, and a controller governing said power supply and responsive to said light detector for interrupting said power supply upon an increase in the output of said light detector above a threshold ambient level.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: September 9, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Dean Jennings, Aaron M. Hunter, Abhilash J. Mayur, Vijay Parihar
  • Publication number: 20080210671
    Abstract: A dynamic surface anneal apparatus for annealing a semiconductor workpiece has a workpiece support for supporting a workpiece, an optical source and scanning apparatus for scanning the optical source and the workpiece support relative to one another along a fast axis. The optical source includes an array of laser emitters arranged generally in successive rows of the emitters, the rows being transverse to the fast axis. Plural collimating lenslets overlie respective ones of the rows of emitters and provide collimation along the fast axis. The selected lenslets have one or a succession of optical deflection angles corresponding to beam deflections along the fast axis for respective rows of emitters. Optics focus light from the array of laser emitters onto a surface of the workpiece to form a succession of line beams transverse to the fast axis spaced along the fast axis in accordance with the succession of deflection angles.
    Type: Application
    Filed: August 23, 2006
    Publication date: September 4, 2008
    Inventors: Dean Jennings, Abhilash J. Mayur, Timothy N. Thomas, Vijay Parihar, Vedapuram S. Achutharaman, Randhir P. S. Thakur
  • Publication number: 20080108209
    Abstract: A method of forming transistors on a wafer includes forming gates over gate insulators on a surface of the wafer and ion implanting dopant impurity atoms into the wafer to form source and drain regions aligned on opposite sides of each gate. The wafer is then annealed by pre-heating the bulk of the wafer to an elevated temperature over 350 degrees C. but below a temperature at which the dopant atoms tend to cluster. Meanwhile, an intense line beam is produced having a narrow dimension along a fast axis from an array of coherent CW lasers of a selected wavelength. This line beam is scanned across the surface of the heated wafer along the direction of the fast axis, so as to heat, up to a peak surface temperature near a melting temperature of the wafer, a moving localized region on the surface of the wafer having (a) a width corresponding to the narrow beam width and (b) an extremely shallow below-surface depth.
    Type: Application
    Filed: April 16, 2007
    Publication date: May 8, 2008
    Inventors: PHILIP ALLAN KRAUS, Vijay Parihar
  • Publication number: 20080108210
    Abstract: A plasma enhanced physical vapor deposition process deposits an amorphous carbon layer on an ion-implanted wafer for use in dynamic surface annealing of the wafer with an intense line beam of a laser wavelength. The deposition process is carried out at a wafer temperature below the dopant clustering threshold temperature, and includes introducing the wafer into a chamber having a carbon-containing target overlying the wafer, and furnishing a carrier gas into the chamber. The process further includes generating a wafer bias voltage and applying target source power to the carbon-containing target sufficient to produce ion bombardment of the carbon-containing target. The wafer bias voltage is set to a level at which the amorphous carbon layer that is deposited has a desired extinction coefficient at the laser wavelength.
    Type: Application
    Filed: April 5, 2007
    Publication date: May 8, 2008
    Inventors: Vijay Parihar, Christopher Dennis Bencher, Rajesh Kanuri, Marlon E. Menezes
  • Publication number: 20080057740
    Abstract: Methods are disclosed for activating dopants in a doped semiconductor substrate. A carbon precursor is flowed into a substrate processing chamber within which the doped semiconductor substrate is disposed. A plasma is formed from the carbon precursor in the substrate processing chamber. A carbon film is deposited over the substrate with the plasma. A temperature of the substrate is maintained while depositing the carbon film less than 500° C. The deposited carbon film is exposed to electromagnetic radiation for a period less than 10 ms, and has an extinction coefficient greater than 0.3 at a wavelength comprised by the electromagnetic radiation.
    Type: Application
    Filed: August 24, 2007
    Publication date: March 6, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Jeffrey Munro, Srinivas Nemani, Young Lee, Marlon Menezes, Christopher Bencher, Vijay Parihar
  • Publication number: 20080057681
    Abstract: A plasma enhanced physical vapor deposition process deposits an amorphous carbon layer on an ion-implanted wafer for use in dynamic surface annealing of the wafer with an intense line beam of a laser wavelength. The deposition process is carried out at a wafer temperature below the dopant clustering threshold temperature, and includes introducing the wafer into a chamber and furnishing a hydrocarbon process gas into the chamber, preferably propylene (C3H6) or toluene (C7H8) or acetylene (C2H2) or a mixture of acetylene and methane (C2H4). The process further includes inductively coupling RF plasma source power into the chamber while and applying RF plasma bias power to the wafer. The wafer bias voltage is set to a level at which the amorphous carbon layer that is deposited has a desired stress (compressive or tensile). We have discovered that at a wafer temperature less than or equal to 475 degrees C.
    Type: Application
    Filed: March 28, 2007
    Publication date: March 6, 2008
    Inventors: Vijay Parihar, Christopher Dennis Bencher, Rajesh Kanuri, Marlon E. Menezes
  • Patent number: 7335611
    Abstract: A method of forming a conductor in a thin film structure on a semiconductor substrate includes forming high aspect ratio openings in a base layer having vertical side walls, depositing a dielectric barrier layer comprising a dielectric compound of a barrier metal on the surfaces of the high aspect ratio openings including the vertical side walls, depositing a metal barrier layer comprising the barrier metal on the first barrier layer, depositing a main conductor species seed layer on the metal barrier layer and depositing a main conductor layer. The method further includes annealing the main conductor layer by (a) directing light from an array of continuous wave lasers into a line of light extending at least partially across the thin film structure, and (b) translating the line of light relative to the thin film structure in a direction transverse to the line of light.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: February 26, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Hiroji Hanawa, Biagio Gallo, Kenneth S. Collins, Kai Ma, Vijay Parihar, Dean Jennings, Abhilash J. Mayur, Amir Al-Bayati, Andrew Nguyen
  • Patent number: 7323401
    Abstract: A method of processing a thin film structure on a semiconductor substrate using an optically writable mask includes placing the substrate in a reactor chamber, the substrate having on its surface a target layer to be etched in accordance with a predetermined pattern, and depositing a carbon-containing hard mask layer on the substrate by (a) introducing a carbon-containing process gas into the chamber, (b) generating a reentrant toroidal RF plasma current in a reentrant path that includes a process zone overlying the workpiece by coupling plasma RF source power to an external portion of the reentrant path, and (c) coupling RF plasma bias power or bias voltage to the workpiece. The method further includes photolithographically defining the predetermined pattern in the carbon-containing hard mask layer, and etching the target layer in the presence of the hard mask layer.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: January 29, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Hiroji Hanawa, Biagio Gallo, Kenneth S. Collins, Kai Ma, Vijay Parihar, Dean Jennings, Abhilash J. Mayur, Amir Al-Bayati, Andrew Nguyen
  • Publication number: 20070298575
    Abstract: Methods for reducing contact resistance in semiconductor devices are provided in the present invention. In one embodiment, the method includes providing a substrate having semiconductor device formed thereon, wherein the device has source and drain regions and a gate structure formed therein, performing a silicidation process on the substrate by a thermal annealing process, and performing a laser anneal process on the substrate. In another embodiment, the method includes providing a substrate having implanted dopants, performing a silicidation process on the substrate by a thermal annealing process, and activating the dopants by a laser anneal process.
    Type: Application
    Filed: June 23, 2006
    Publication date: December 27, 2007
    Inventors: Faran Nouri, Eun-Ha Kim, Sunderraj Thirupapuliyur, Vijay Parihar
  • Patent number: 7312162
    Abstract: A method of depositing a carbon layer on a workpiece includes placing the workpiece in a reactor chamber, introducing a carbon-containing process gas into the chamber, generating a reentrant toroidal RF plasma current in a reentrant path that includes a process zone overlying the workpiece by coupling plasma RF source power to an external portion of the reentrant path, and coupling RF plasma bias power or bias voltage to the workpiece.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: December 25, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Hiroji Hanawa, Biagio Gallo, Kenneth S. Collins, Kai Ma, Vijay Parihar, Dean Jennings, Abhilash J. Mayur, Amir Al-Bayati, Andrew Nguyen
  • Patent number: 7312148
    Abstract: A method of forming a barrier layer for a thin film structure on a semiconductor substrate includes forming high aspect ratio openings in a base layer having vertical side walls, depositing a dielectric barrier layer comprising a dielectric compound of a barrier metal on the surfaces of the high aspect ratio openings including the vertical side walls and depositing a metal barrier layer comprising the barrier metal on the first barrier layer. The method further includes reflowing the metal barrier layer by (a) directing light from an array of continuous wave lasers into a line of light extending at least partially across the thin film structure, and (b) translating the line of light relative to the thin film structure in a direction transverse to the line of light.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: December 25, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Hiroji Hanawa, Biagio Gallo, Kenneth S Collins, Kai Ma, Vijay Parihar, Dean Jennings, Abhilash J. Mayur, Amir Al-Bayati, Andrew Nguyen
  • Publication number: 20070293058
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Application
    Filed: August 10, 2007
    Publication date: December 20, 2007
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Dean JENNINGS, Haifan LIANG, Mark YAM, Vijay PARIHAR, Abhilash MAYUR, Aaron HUNTER, Bruce ADAMS, Joseph RANISH
  • Patent number: 7279721
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: October 9, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash Mayur, Aaron Hunter, Bruce Adams, Joseph Michael Ranish
  • Publication number: 20070032004
    Abstract: A method of forming a barrier layer for a thin film structure on a semiconductor substrate includes forming high aspect ratio openings in a base layer having vertical side walls, depositing a dielectric barrier layer comprising a dielectric compound of a barrier metal on the surfaces of the high aspect ratio openings including the vertical side walls and depositing a metal barrier layer comprising the barrier metal on the first barrier layer. The method further includes reflowing the metal barrier layer by (a) directing light from an array of continuous wave lasers into a line of light extending at least partially across the thin film structure, and (b) translating the line of light relative to the thin film structure in a direction transverse to the line of light.
    Type: Application
    Filed: August 8, 2005
    Publication date: February 8, 2007
    Inventors: Kartik Ramaswamy, Hiroji Hanawa, Biagio Gallo, Kenneth Collins, Kai Ma, Vijay Parihar, Dean Jennings, Abhilash Mayur, Amir Al-Bayati, Andrew Nguyen
  • Publication number: 20070032054
    Abstract: A method of processing a thin film structure on a semiconductor substrate using an optically writable mask includes placing the substrate in a reactor chamber, the substrate having on its surface a target layer to be etched in accordance with a predetermined pattern, and depositing a carbon-containing hard mask layer on the substrate by (a) introducing a carbon-containing process gas into the chamber, (b) generating a reentrant toroidal RF plasma current in a reentrant path that includes a process zone overlying the workpiece by coupling plasma RF source power to an external portion of the reentrant path, and (c) coupling RF plasma bias power or bias voltage to the workpiece. The method further includes photolithographically defining the predetermined pattern in the carbon-containing hard mask layer, and etching the target layer in the presence of the hard mask layer.
    Type: Application
    Filed: August 8, 2005
    Publication date: February 8, 2007
    Inventors: Kartik Ramaswamy, Hiroji Hanawa, Biagio Gallo, Kenneth Collins, Kai Ma, Vijay Parihar, Dean Jennings, Abhilash Mayur, Amir Al-Bayati, Andrew Nguyen
  • Publication number: 20070032082
    Abstract: A method of processing a thin film structure on a semiconductor substrate using an optically writable mask, the method includes placing the substrate in a reactor chamber, the substrate having on its surface a target layer to be exposed to a light source in accordance with a predetermined pattern, depositing an optically writable carbon-containing mask layer on the substrate by (a) introducing a carbon-containing process gas into the chamber, (b) generating a reentrant toroidal RF plasma current in a reentrant path that includes a process zone overlying the workpiece by coupling plasma RF source power to an external portion of the reentrant path, (c) coupling RF plasma bias power or bias voltage to the workpiece.
    Type: Application
    Filed: August 8, 2005
    Publication date: February 8, 2007
    Inventors: Kartik Ramaswamy, Hiroji Hanawa, Biagio Gallo, Kenneth Collins, Kai Ma, Vijay Parihar, Dean Jennings, Abhilash Mayur, Amir Al-Bayati, Andrew Nguyen