Patents by Inventor Vijayeshwar D. Khanna

Vijayeshwar D. Khanna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11570928
    Abstract: A server node connection system uses two or more proximity sensors per server node to determine progressive, real time changes in wipe length for each individual connector on the node that is connected to an opposing header connector on header connected to a midplane of the server assembly/rack. The system is capable of scanning, monitoring, trending, and alarming.
    Type: Grant
    Filed: August 22, 2020
    Date of Patent: January 31, 2023
    Assignee: International Business Machines Corporation
    Inventors: Sri M Sri-Jayantha, Hien P Dang, Vijayeshwar D Khanna
  • Publication number: 20200389994
    Abstract: A server node connection system uses two or more proximity sensors per server node to determine progressive, real time changes in wipe length for each individual connector on the node that is connected to an opposing header connector on header connected to a midplane of the server assembly/rack. The system is capable of scanning, monitoring, trending, and alarming.
    Type: Application
    Filed: August 22, 2020
    Publication date: December 10, 2020
    Inventors: Sri M. Sri-Jayantha, Hien P. Dang, Vijayeshwar D. Khanna
  • Patent number: 10834844
    Abstract: A server node connection system uses two or more proximity sensors per server node to determine progressive, real time changes in wipe length for each individual connector on the node that is connected to an opposing header connector on header connected to a midplane of the server assembly/rack. The system is capable of scanning, monitoring, trending, and alarming.
    Type: Grant
    Filed: November 4, 2018
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Sri M Sri-Jayantha, Hien P Dang, Vijayeshwar D Khanna
  • Publication number: 20200146172
    Abstract: A server node connection system uses two or more proximity sensors per server node to determine progressive, real time changes in wipe length for each individual connector on the node that is connected to an opposing header connector on header connected to a midplane of the server assembly/rack. The system is capable of scanning, monitoring, trending, and alarming.
    Type: Application
    Filed: November 4, 2018
    Publication date: May 7, 2020
    Inventors: Sri M. Sri-Jayantha, Hien P. Dang, Vijayeshwar D. Khanna
  • Patent number: 10276534
    Abstract: A first electrical contact and second contact is upon an interposer and/or upon a processing device. The first contact includes a minor axis and a major axis. The second contact includes diameter axes. The first contact is positioned such that the major axis is generally aligned with the direction of expansion of the interposer and/or the processing device. The first electrical contact may further be positioned within a power/ground or input/output (I/O) region of the interposer and/or processing device. The first electrical contact may further be positioned within a center region that is surrounded by a perimeter region of the interposer and/or the processing device. The dimensions or aspect ratios of major and minor axes of neighboring first electrical contacts within an electrical contact grid may differ relative thereto. Further, the angle of respective major and minor axes of neighboring first electrical contacts within the electrical contact grid may differ relative thereto.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: April 30, 2019
    Assignee: International Business Machines Corporation
    Inventors: Anson J. Call, Vijayeshwar D. Khanna, David J. Russell, Krishna R. Tunga
  • Patent number: 10276535
    Abstract: An electrical contact upon an interposer and/or upon a processing device includes a minor axis and a major axis. The contact is positioned such that the major axis is generally aligned with the direction of expansion of the interposer and/or the processing device. The electrical contact may further be positioned within a power/ground or input/output (I/O) region of the interposer and/or processing device. The electrical contact may further be positioned within a center region that is surrounded by a perimeter region of the interposer and/or the processing device. The dimensions or aspect ratios of major and minor axes of neighboring electrical contacts within an electrical contact grid may differ relative thereto. Further, the angle of respective major and minor axes of neighboring electrical contacts within the electrical contact grid may differ relative thereto.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: April 30, 2019
    Assignee: International Business Machines Corporation
    Inventors: Anson J. Call, Vijayeshwar D. Khanna, David J. Russell, Krishna R. Tunga
  • Patent number: 10108753
    Abstract: Method of designing a laminate substrate having upper laminate layers and an equal plurality of lower laminate layers including: dividing the laminate substrate into regions having corresponding laminate layer pairs consisting of an upper laminate layer and a lower laminate layer; calculating a net stretching value for each corresponding laminate layer pair in each region to result in net stretching values in each region; summing the net stretching values in each region to result in a net stretching value for each region proportional to a curvature of each local region; calculating a relative out-of-plane displacement for the laminate substrate from the curvature of each local region; calculating a predicted thermal warpage for the laminate substrate; and finalizing a design of the laminate substrate when the predicted thermal warpage is within a predetermined acceptable range.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: October 23, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anson J. Call, Vijayeshwar D. Khanna, David J. Russell, Krishna R. Tunga
  • Publication number: 20180061800
    Abstract: An electrical contact upon an interposer and/or upon a processing device includes a minor axis and a major axis. The contact is positioned such that the major axis is generally aligned with the direction of expansion of the interposer and/or the processing device. The electrical contact may further be positioned within a power/ground or input/output (I/O) region of the interposer and/or processing device. The electrical contact may further be positioned within a center region that is surrounded by a perimeter region of the interposer and/or the processing device. The dimensions or aspect ratios of major and minor axes of neighboring electrical contacts within an electrical contact grid may differ relative thereto. Further, the angle of respective major and minor axes of neighboring electrical contacts within the electrical contact grid may differ relative thereto.
    Type: Application
    Filed: October 26, 2017
    Publication date: March 1, 2018
    Inventors: Anson J. Call, Vijayeshwar D. Khanna, David J. Russell, Krishna R. Tunga
  • Publication number: 20180061799
    Abstract: A first electrical contact and second contact is upon an interposer and/or upon a processing device. The first contact includes a minor axis and a major axis. The second contact includes diameter axes. The first contact is positioned such that the major axis is generally aligned with the direction of expansion of the interposer and/or the processing device. The first electrical contact may further be positioned within a power/ground or input/output (I/O) region of the interposer and/or processing device. The first electrical contact may further be positioned within a center region that is surrounded by a perimeter region of the interposer and/or the processing device. The dimensions or aspect ratios of major and minor axes of neighboring first electrical contacts within an electrical contact grid may differ relative thereto. Further, the angle of respective major and minor axes of neighboring first electrical contacts within the electrical contact grid may differ relative thereto.
    Type: Application
    Filed: August 8, 2017
    Publication date: March 1, 2018
    Inventors: Anson J. Call, Vijayeshwar D. Khanna, David J. Russell, Krishna R. Tunga
  • Patent number: 9865557
    Abstract: An electrical contact upon an interposer and/or upon a processing device includes a minor axis and a major axis. The contact is positioned such that the major axis is generally aligned with the direction of expansion of the interposer and/or the processing device. The electrical contact may further be positioned within a power/ground or input/output (I/O) region of the interposer and/or processing device. The electrical contact may further be positioned within a center region that is surrounded by a perimeter region of the interposer and/or the processing device. The dimensions or aspect ratios of major and minor axes of neighboring electrical contacts within an electrical contact grid may differ relative thereto. Further, the angle of respective major and minor axes of neighboring electrical contacts within the electrical contact grid may differ relative thereto.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: January 9, 2018
    Assignee: International Business Machines Corporation
    Inventors: Anson J. Call, Vijayeshwar D. Khanna, David J. Russell, Krishna R. Tunga
  • Publication number: 20170351783
    Abstract: Method of designing a laminate substrate having upper laminate layers and an equal plurality of lower laminate layers including: dividing the laminate substrate into regions having corresponding laminate layer pairs consisting of an upper laminate layer and a lower laminate layer; calculating a net stretching value for each corresponding laminate layer pair in each region to result in net stretching values in each region; summing the net stretching values in each region to result in a net stretching value for each region proportional to a curvature of each local region; calculating a relative out-of-plane displacement for the laminate substrate from the curvature of each local region; calculating a predicted thermal warpage for the laminate substrate; and finalizing a design of the laminate substrate when the predicted thermal warpage is within a predetermined acceptable range.
    Type: Application
    Filed: June 7, 2016
    Publication date: December 7, 2017
    Inventors: Anson J. Call, Vijayeshwar D. Khanna, David J. Russell, Krishna R. Tunga
  • Patent number: 9630269
    Abstract: A mechanism to attach a die to a substrate and method of use are disclosed. The vacuum carrier includes a frame composed of material compatible with solder reflow process. The vacuum carrier further includes a vacuum port extending from a top surface to an underside surface of the frame. The vacuum carrier further includes a seal mechanism provided about a perimeter on the underside surface of the frame of the vacuum carrier. The frame and seal mechanism are structured to maintain a flatness of a die attached to the vacuum carrier by a vacuum source during the solder reflow process.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: April 25, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Vijayeshwar D. Khanna, Mohammed S. Shaikh
  • Patent number: 9563732
    Abstract: A method of predicting warpage of a laminate is disclosed in which in-plane copper imbalance is calculated. A method of designing an organic build-up laminate is provided in which in-plane copper imbalance is calculated and imbalances are corrected.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: February 7, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anson J. Call, Vijayeshwar D. Khanna, David J. Russell, Krishna R. Tunga
  • Patent number: 9550258
    Abstract: A structure and method of mounting a heat sink having a body and mounting points configured so as to connect to a mounting medium, at least one of the mounting points being configured to allow movement in a thermally-induced expansion direction.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: January 24, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Sri M Sri-Jayantha, Gerard McVicker, Jr., Vijayeshwar D Khanna, Jr.
  • Patent number: 9508789
    Abstract: An electronic module includes a substrate including at least one structure that reduces stress flow through the substrate, wherein the structure includes at least one trench in a surface of the substrate, and a plurality of capacitor legs disposed on an upper surface of the substrate.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: November 29, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: David Questad, Vijayeshwar D Khanna, Jennifer V Muncy, Arun Sharma, Sri M Sri-Jayantha, Lorenzo Valdevit
  • Publication number: 20160211161
    Abstract: A clamping apparatus applies a force to a workpiece during processing. The clamping apparatus includes a base defining a work area configured to receive a joined structure having multiple elements. The base defines a recess in the work area. An adjustable mechanism is configured to releasably couple to the base and apply a adjustable downward force to the joined structure to bend the joined structure downwardly into the recess during a process. A resilient plunger is part of the adjustable mechanism. The resilient plunger extends downwardly from a top plate of the adjustable mechanism, and the resilient plunger is configured to contact a top of a first element of the joined structure to apply the downward force.
    Type: Application
    Filed: March 30, 2016
    Publication date: July 21, 2016
    Inventors: Edmund Blackshear, Vijayeshwar D. Khanna, Oswald J. Mantilla
  • Patent number: 9305894
    Abstract: A clamping apparatus applies a force to a workpiece during processing. The clamping apparatus includes a base defining a work area configured to receive a joined structure having multiple elements. The base defines a recess in the work area. An adjustable mechanism is configured to releasably couple to the base and apply a adjustable downward force to the joined structure to bend the joined structure downwardly into the recess during a process. A resilient plunger is part of the adjustable mechanism. The resilient plunger extends downwardly from a top plate of the adjustable mechanism, and the resilient plunger is configured to contact a top of a first element of the joined structure to apply the downward force.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: April 5, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Edmund Blackshear, Vijayeshwar D. Khanna, Oswald J. Mantilla
  • Patent number: 9227261
    Abstract: A vacuum carrier can be employed to provide a partial vacuum on a back side surface of a substrate thereby holding the substrate flat against a rigid surface of the carrier throughout the duration of a bonding process. The magnitude of vacuum can be optimized to limit the warping of the substrate during and after bonding with another substrate, and to limit the mechanical stress induced in the solder balls during cooling. The vacuum carrier can include a base plate, a seal plate with at least one opening configured to accommodate at least one substrate, and vacuum seal elements configured to create a vacuum environment that pushes the substrate against the base plate when the vacuum carrier is under vacuum. The configuration of the vacuum carrier is chosen to avoid distortion of the substrate due to the vacuum seal elements, while allowing adjustment of the magnitude of the partial vacuum.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: January 5, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Vijayeshwar D. Khanna, Sri M. Sri-Jayantha
  • Patent number: 9171742
    Abstract: The present disclosure relates to methods and devices for manufacturing a three-dimensional chip package. A method includes forming a linear groove on an alignment rail, attaching an alignment rod to the linear groove, forming alignment channels on a plurality of integrated circuit chips, and aligning the plurality of integrated circuit chips by stacking the plurality of integrated circuit chips along the alignment rail. Another method includes forming an alignment ridge on an alignment rail, forming alignment channels on a plurality of integrated circuit chips, and aligning the plurality of integrated circuit chips by stacking the plurality of integrated circuit chips along the alignment rail.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: October 27, 2015
    Assignee: GLOBALFOUNDRIES U.S. 2 LLC
    Inventors: Evan G. Colgan, Steven A. Cordes, Daniel C. Edelstein, Vijayeshwar D. Khanna, Kenneth Latzko, Qinghuang Lin, Peter J. Sorce, Sri M. Sri-Jayantha, Robert L. Wisnieff, Roy R. Yu
  • Publication number: 20150118799
    Abstract: A mechanism to attach a die to a substrate and method of use are disclosed. The vacuum carrier includes a frame composed of material compatible with solder reflow process. The vacuum carrier further includes a vacuum port extending from a top surface to an underside surface of the frame. The vacuum carrier further includes a seal mechanism provided about a perimeter on the underside surface of the frame of the vacuum carrier. The frame and seal mechanism are structured to maintain a flatness of a die attached to the vacuum carrier by a vacuum source during the solder reflow process.
    Type: Application
    Filed: October 30, 2013
    Publication date: April 30, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Vijayeshwar D. KHANNA, Mohammed S. SHAIKH