Patents by Inventor Vincent Ku

Vincent Ku has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140025103
    Abstract: An apparatus for sealing a puncture through a vessel wall including a positioning assembly, a sheath releasably engaged with the positioning assembly, and a support member axially advanceable through the sheath. The positioning assembly includes a positioning element positioned at a distal portion of the positioning assembly and a sealant disposed at a distal portion of the positioning assembly. The sheath guides the sealant and positioning assembly to the puncture in the vessel wall.
    Type: Application
    Filed: September 25, 2013
    Publication date: January 23, 2014
    Applicant: AccessClosure, Inc.
    Inventors: Ronald R. Hundertmark, Andy H. Uchida, David L. Fiscella, Moshe Zilversmit, Brandon R. Fell, Vincent Ku, Curt Guyer, Richard E. Repp, Mark Sponsel
  • Publication number: 20130253579
    Abstract: An apparatus for sealing a puncture through a vessel wall including a positioning assembly, a sheath releasably engaged with the positioning assembly, and a support member axially advanceable through the sheath. The positioning assembly includes a positioning element positioned at a distal portion of the positioning assembly and a sealant disposed at a distal portion of the positioning assembly. The sheath guides the sealant and positioning assembly to the puncture in the vessel wall.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 26, 2013
    Applicant: ACCESSCLOSURE, INC.
    Inventors: Ronald Hundertmark, Andy H. Uchida, Moshe Zilversmit, David L. Fiscella, Brandon Fell, Vincent Ku
  • Publication number: 20120116382
    Abstract: Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present technology, for example, is directed to a treatment device having a multi-electrode array configured to be delivered to a renal blood vessel. The array is selectively transformable between a delivery or low-profile state (e.g., a generally straight shape) and a deployed state (e.g., a radially expanded, generally helical shape). The multi-electrode array is sized and shaped so that the electrodes or energy delivery elements contact an interior wall of the renal blood vessel when the array is in the deployed (e.g., helical) state. The electrodes or energy delivery elements are configured for direct and/or indirect application of thermal and/or electrical energy to heat or otherwise electrically modulate neural fibers that contribute to renal function or of vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: October 25, 2011
    Publication date: May 10, 2012
    Applicant: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Vincent Ku, Robert Beetel, Andrew Wu, Denise Zarins, Maria G. Aboytes
  • Publication number: 20110070730
    Abstract: Embodiments of the invention provide a method for forming tantalum nitride materials on a substrate by employing an atomic layer deposition (ALD) process. The method includes heating a tantalum precursor within an ampoule to a predetermined temperature to form a tantalum precursor gas and sequentially exposing a substrate to the tantalum precursor gas and a nitrogen precursor to form a tantalum nitride material. Thereafter, a nucleation layer and a bulk layer may be deposited on the substrate. In one example, a radical nitrogen compound may be formed from the nitrogen precursor during a plasma-enhanced ALD process. A nitrogen precursor may include nitrogen or ammonia. In another example, a metal-organic tantalum precursor may be used during the deposition process.
    Type: Application
    Filed: October 28, 2010
    Publication date: March 24, 2011
    Inventors: Wei Cao, Hua Chung, Vincent Ku, Ling Chen
  • Publication number: 20100247767
    Abstract: Apparatus and method for forming thin layers on a substrate are provided. A processing chamber has a gas delivery assembly that comprises a lid with a cap portion and a covering member that together define an expanding channel at a central portion of the lid, the covering member having a tapered bottom surface extending from the expanding channel to a peripheral portion of the covering member. Gas conduits are coupled to the expanding channel and positioned at an angle from a center of the expanding channel to form a circular gas flow through the expanding channel. The bottom surface of the chamber lid is shaped and sized to substantially cover the substrate receiving surface. One or more valves are coupled to the passageway, and one or more gas sources are coupled to each valve. A choke is disposed on the chamber lid adjacent a perimeter of the tapered bottom surface.
    Type: Application
    Filed: June 10, 2010
    Publication date: September 30, 2010
    Inventors: LING CHEN, Vincent Ku, Dien-Yeh Wu, Hua Chung, Alan Ouye, Norman Nakashima
  • Patent number: 7780788
    Abstract: Apparatus and method for forming thin layers on a substrate are provided. A processing chamber has a gas delivery assembly that comprises a lid with a cap portion and a covering member that together define an expanding channel at a central portion of the lid, the covering member having a tapered bottom surface extending from the expanding channel to a peripheral portion of the covering member. Gas conduits are coupled to the expanding channel and positioned at an angle from a center of the expanding channel to form a circular gas flow through the expanding channel, The bottom surface of the chamber lid is shaped and sized to substantially cover the substrate receiving surface. One or more valves are coupled to the passageway, and one or more gas sources are coupled to each valve. A choke is disposed on the chamber lid adjacent a perimeter of the tapered bottom surface.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: August 24, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Ling Chen, Vincent Ku, Dien-Yeh Wu, Hua Chung, Alan Ouye, Norman Nakashima
  • Patent number: 7780785
    Abstract: An apparatus and method for performing a cyclical layer deposition process, such as atomic layer deposition is provided. In one aspect, the apparatus includes a substrate support having a substrate receiving surface, and a chamber lid comprising a tapered passageway extending from a central portion of the chamber lid and a bottom surface extending from the passageway to a peripheral portion of the chamber lid, the bottom surface shaped and sized to substantially cover the substrate receiving surface. The apparatus also includes one or more valves coupled to the gradually expanding channel, and one or more gas sources coupled to each valve.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: August 24, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Ling Chen, Vincent Ku, Dien-Yeh Wu, Hua Chung, Alan Ouye, Norman Nakashima, Mei Chang
  • Patent number: 7699023
    Abstract: Embodiments as described herein provide an apparatus and a method for performing an atomic layer deposition process. In one embodiment, a deposition chamber assembly contains a substrate support having a substrate receiving surface, and a chamber lid containing a tapered passageway extending from a central portion of the chamber lid, and a bottom surface extending from the passageway to a peripheral portion of the chamber lid, the bottom surface shaped and sized to substantially cover the substrate receiving surface. The system also includes one or more valves coupled to the gradually expanding channel, and one or more gas sources coupled to each valve. In one example, the gas source is a gas box assembly which is attached to the deposition chamber by at least one disconnect fitting and contains an inlet tube directed away from the gas outlet.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: April 20, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Ling Chen, Vincent Ku, Dien-Yeh Wu, Hua Chung, Alan Ouye, Norman Nakashima, Mei Chang
  • Publication number: 20090197406
    Abstract: Embodiments of the invention provide a method for forming tantalum nitride materials on a substrate by employing an atomic layer deposition (ALD) process. The method includes heating a tantalum precursor within an ampoule to a predetermined temperature to form a tantalum precursor gas and sequentially exposing a substrate to the tantalum precursor gas and a nitrogen precursor to form a tantalum nitride material. Thereafter, a nucleation layer and a bulk layer may be deposited on the substrate. In one example, a radical nitrogen compound may be formed from the nitrogen precursor during a plasma-enhanced ALD process. A nitrogen precursor may include nitrogen or ammonia. In another example, a metal-organic tantalum precursor may be used during the deposition process.
    Type: Application
    Filed: April 2, 2009
    Publication date: August 6, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Wei Cao, Hua Chung, Vincent Ku, Ling Chen
  • Patent number: 7514358
    Abstract: Embodiments of the invention provide a method for forming tantalum nitride materials on a substrate by employing an atomic layer deposition (ALD) process. The method includes heating a tantalum precursor within an ampoule to a predetermined temperature to form a tantalum precursor gas and sequentially exposing a substrate to the tantalum precursor gas and a nitrogen precursor to form a tantalum nitride material. Thereafter, a nucleation layer and a bulk layer may be deposited on the substrate. In one example, a radical nitrogen compound may be formed from the nitrogen precursor during a plasma-enhanced ALD process. A nitrogen precursor may include nitrogen or ammonia. In another example, a metal-organic tantalum precursor may be used during the deposition process.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: April 7, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Wei Cao, Hua Chung, Vincent Ku, Ling Chen
  • Patent number: 7422637
    Abstract: An apparatus and method for performing uniform gas flow in a processing chamber is provided. In one embodiment, an apparatus is an edge ring that includes an annular body having an annular seal projecting therefrom is provided. The seal is coupled to a side of the annular body opposite a side adapted to seat on the substrate support. In another embodiment, a processing system is provided that includes a chamber body, a lid, a substrate support and a plurality of flow control orifices. The lid is disposed on the chamber body and defining an interior volume therewith. The substrate support is disposed in the interior volume and at least partially defines a processing region with the lid. The flow control orifices are disposed between the substrate support and the lid. The flow control orifices are adapted to control flow of gases exiting the processing region.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: September 9, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Vincent Ku, Ling Chen, Howard Grunes, Hua Chung
  • Publication number: 20080041313
    Abstract: Embodiments as described here provide an apparatus and a method for performing an atomic layer deposition process. In one embodiment, a deposition chamber assembly contains a substrate support having a substrate receiving surface, and a chamber lid containing a tapered passageway extending from a central portion of the chamber lid and a bottom surface extending from the passageway to a peripheral portion of the chamber lid, the bottom surface shaped and sized to substantially cover the substrate receiving surface. The system also includes one or more valves coupled to the gradually expanding channel, and one or more gas sources coupled to each valve. In one example, the gas source is an ampoule assembly which is attached to the deposition chamber by at least one disconnect fitting and contains an inlet tube directed away from the gas outlet.
    Type: Application
    Filed: October 26, 2007
    Publication date: February 21, 2008
    Inventors: LING CHEN, VINCENT KU, DIEN-YEH WU, HUA CHUNG, ALAN OUYE, NORMAN NAKASHIMA, MEI CHANG
  • Publication number: 20080038463
    Abstract: In one embodiment, a method for depositing a material on a substrate during an atomic layer deposition (ALD) process is provided which includes positioning the substrate on a substrate support within a process chamber, flowing a carrier gas into an expanding channel to form a circular flow of the carrier gas, exposing the substrate to the circular flow, pulsing a first reactant gas into the circular flow, and depositing a material onto the substrate. The method further provides that the process chamber has a chamber lid containing a centrally positioned expanding channel, a tapered bottom surface extending from the expanding channel to a peripheral portion of the chamber lid, at least two gas inlets in fluid communication with the expanding channel, and at least two conduits positioned to provide a gas flow having a circular pattern within the expanded channel.
    Type: Application
    Filed: October 17, 2007
    Publication date: February 14, 2008
    Inventors: Ling Chen, Vincent Ku, Dien-Yeh Wu, Hua Chung, Alan Ouye, Norman Nakashima
  • Publication number: 20070151514
    Abstract: In one embodiment, an apparatus for performing an atomic layer deposition process is provided which includes a chamber body having a substrate support, a lid assembly attached to the chamber body, and delivery sub-assemblies coupled to the lid assembly and configured to deliver process gases into a centralized expanding conduit, which extends through the lid assembly and expands radially outward. The first gas delivery sub-assembly contains an annular mixing channel encircling and in fluid communication with the centralized expanding conduit, wherein the annular mixing channel is adapted to deliver a first process gas through a plurality of passageways and nozzles and into the centralized expanding conduit. A first gas inlet may be coupled to the annular mixing channel and positioned to provide the first process gas to the annular mixing channel. The second gas delivery sub-assembly contains a second gas inlet in fluid communication to the centralized expanding conduit.
    Type: Application
    Filed: March 1, 2007
    Publication date: July 5, 2007
    Inventors: LING CHEN, Vincent Ku, Mei Chang, Dien-Yeh Wu, Hua Chung
  • Publication number: 20070110898
    Abstract: In one embodiment, an apparatus for generating a gaseous chemical precursor used in a vapor deposition processing system is provided which includes a canister comprising a sidewall, a top, and a bottom encompassing an interior volume therein, an inlet port and an outlet port in fluid communication with the interior volume, and an inlet tube extending from the inlet port into the canister. The apparatus further may contain a plurality of baffles within the interior volume extending between the top and the bottom of the canister, and a precursor slurry contained within the interior volume, wherein the precursor slurry contains a solid precursor material and a thermally conductive material that is unreactive towards the solid precursor material. In one example, the solid precursor material solid precursor material is pentakis(dimethylamino) tantalum.
    Type: Application
    Filed: December 19, 2006
    Publication date: May 17, 2007
    Inventors: Seshadri Ganguli, Ling Chen, Vincent Ku
  • Publication number: 20070099415
    Abstract: In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes positioning a substrate having an underlying tungsten layer within a process chamber and depositing a tungsten-containing barrier layer on the underlying tungsten layer during a cyclical layer deposition process. The tungsten-containing barrier layer contains a refractory metal nitride material. The method further provides depositing a seed layer on the tungsten-containing barrier layer during a vapor deposition process and depositing a bulk tungsten layer on the seed layer during a chemical vapor deposition process.
    Type: Application
    Filed: October 16, 2006
    Publication date: May 3, 2007
    Inventors: Ling Chen, Hua Chung, Sean Seutter, Michael Yang, Ming Xi, Vincent Ku, Dien-Yeh Wu, Alan Ouye, Norman Nakashima, Barry Chin, Hong Zhang
  • Publication number: 20070089817
    Abstract: A method and apparatus for generating gas for a processing system is provided. In one embodiment, an apparatus for generating gas for a processing system includes a canister having at least one baffle disposed between two ports and containing a precursor material. The precursor material is adapted to produce a gas vapor when heated to a defined temperature at a defined pressure. The baffle forces a carrier gas to travel an extended mean path between the inlet and outlet ports. In another embodiment, an apparatus for generating gas includes a canister having a tube that directs a carrier gas flowing into the canister away from a precursor material disposed within the canister.
    Type: Application
    Filed: November 28, 2006
    Publication date: April 26, 2007
    Inventors: Seshadri Ganguli, Ling Chen, Vincent Ku
  • Publication number: 20070067609
    Abstract: Embodiments of the present invention are directed to an apparatus for generating a precursor for a semiconductor processing system (320). The apparatus includes a canister (300) having a sidewall (402), a top portion and a bottom portion. The canister (300) defines an interior volume (438) having an upper region (418) and a lower region (434). In one embodiment, the apparatus further includes a heater (430) partially surrounding the canister (300). The heater (430) creates a temperature gradient between the upper region (418) and the lower region (434). Also claimed is a method of forming a barrier layer from purified pentakis(dimethylamido)tantalum, for example a tantalum nitride barrier layer by atomic layer deposition.
    Type: Application
    Filed: May 27, 2004
    Publication date: March 22, 2007
    Inventors: Ling Chen, Vincent Ku, Hua Chung, Christophe Marcadal, Seshadri Ganguli, Jenny Lin, Dien-Yeh Wu, Alan Ouye, Mei Chang
  • Publication number: 20070044719
    Abstract: An apparatus and method for performing uniform gas flow in a processing chamber is provided. In one embodiment, an apparatus is an edge ring that includes an annular body having an annular seal projecting therefrom is provided. The seal is coupled to a side of the annular body opposite a side adapted to seat on the substrate support. In another embodiment, a processing system is provided that includes a chamber body, a lid, a substrate support and a plurality of flow control orifices. The lid is disposed on the chamber body and defining an interior volume therewith. The substrate support is disposed in the interior volume and at least partially defines a processing region with the lid. The flow control orifices are disposed between the substrate support and the lid. The flow control orifices are adapted to control flow of gases exiting the processing region.
    Type: Application
    Filed: October 25, 2006
    Publication date: March 1, 2007
    Inventors: Vincent Ku, Ling Chen, Howard Grunes, Hua Chung
  • Publication number: 20060257295
    Abstract: Embodiments of an apparatus for generating a chemical precursor used in a vapor deposition processing system are provide which include a canister having a sidewall, a top, and a bottom forming an interior volume which is in fluid communication with an inlet port and an outlet port. The canister contains a plurality of baffles that extend from the bottom to an upper portion of the interior volume and form an extended mean flow path between the inlet port and the outlet port. In one embodiment, the baffles are contained on a prefabricated insert positioned on the bottom of the canister. In one example, an inlet tube may extend from the inlet port into the interior region and be positioned substantially parallel to the baffles. An outlet end of the inlet tube may be adapted to direct a gas flow away from the outlet port, such as towards the sidewall or top of the canister.
    Type: Application
    Filed: May 16, 2006
    Publication date: November 16, 2006
    Inventors: Ling Chen, Vincent Ku, Hua Chung, Christophe Marcadal, Seshadri Ganguli, Jenny Lin, Dien-Yeh Wu, Alan Ouye, Mei Chang