Patents by Inventor Vincent R. von Kaenel

Vincent R. von Kaenel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8634256
    Abstract: An interface circuit having a first signal path and a second signal path is disclosed. The first and second signal paths are coupled between a first and second nodes, wherein the first node is coupled to receive signals from a source external to an integrated circuit upon which the interface circuit is implemented. Each of the first and second signal paths include circuitry implemented with transistors rated at higher voltages than internal circuitry coupled to receive signals therefrom. The first and second signal paths may utilize different circuit topologies. The interface may thus be used in environments where external circuitry coupled to the external input node conforms to one of a number of different standards (e.g., LPDDR1 and LPDDR2).
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: January 21, 2014
    Assignee: Apple Inc.
    Inventor: Vincent R. von Kaenel
  • Patent number: 8625368
    Abstract: In one embodiment, an integrated circuit includes at least one logic circuit supplied by a first supply voltage and at least one memory circuit coupled to the logic circuit and supplied by a second supply voltage. The memory circuit is configured to be read and written responsive to the logic circuit even if the first supply voltage is less than the second supply voltage during use. In another embodiment, a method includes a logic circuit reading a memory cell, the logic circuit supplied by a first supply voltage; and the memory cell responding to the read using signals that are referenced to the first supply voltage, wherein the memory cell is supplied with a second supply voltage that is greater than the first supply voltage during use.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: January 7, 2014
    Assignee: Apple Inc.
    Inventors: Brian J. Campbell, Vincent R. von Kaenel, Daniel C. Murray, Gregory S. Scott, Sribalan Santhanam
  • Publication number: 20130271179
    Abstract: In one embodiment, an integrated circuit includes a self calibration unit configured to iterate a test on a logic circuit in the integrated circuit at respectively lower supply voltage magnitudes until the test fails. A lowest supply voltage magnitude at which the test passes is used to generate a requested supply voltage magnitude for the integrated circuit. In an embodiment, an integrated circuit includes a series connection of logic gates physically distributed over an area of the integrated circuit, and a measurement unit configured to launch a logical transition into the series and detect a corresponding transition at the output of the series. The amount of time between the launch and the detection is used to request a supply voltage magnitude for the integrated circuit.
    Type: Application
    Filed: June 12, 2013
    Publication date: October 17, 2013
    Inventor: Vincent R. von Kaenel
  • Patent number: 8493088
    Abstract: In one embodiment, an integrated circuit includes a self calibration unit configured to iterate a test on a logic circuit in the integrated circuit at respectively lower supply voltage magnitudes until the test fails. A lowest supply voltage magnitude at which the test passes is used to generate a requested supply voltage magnitude for the integrated circuit. In an embodiment, an integrated circuit includes a series connection of logic gates physically distributed over an area of the integrated circuit, and a measurement unit configured to launch a logical transition into the series and detect a corresponding transition at the output of the series. The amount of time between the launch and the detection is used to request a supply voltage magnitude for the integrated circuit.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: July 23, 2013
    Assignee: Apple Inc.
    Inventor: Vincent R. von Kaenel
  • Patent number: 8476930
    Abstract: In one embodiment, a level shifter circuit may include a shift stage that also embeds transistors that implement a logic operation on two or more inputs to the level shifter. At least one of the inputs may be sourced from circuitry that is powered by a different power supply than the level shifter and circuitry that receives the level shifter output. Additionally, the level shifter includes one or more dummy transistors that match transistors the perform the logic operation, to improve symmetry of the level shifter circuit. In some embodiments, certain design and layout rules may be applied to the level shifter circuit to limit variation in the symmetry over various manufacturing variations.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: July 2, 2013
    Assignee: Apple Inc.
    Inventors: Brian J. Campbell, Vincent R. von Kaenel, Naveen Javarappa, Greg M. Hess
  • Patent number: 8470613
    Abstract: In one embodiment, a packaging solution for an application integrated circuit (IC) and one or more other ICs is provided. The packaging solution may support both chip-on-chip packaging of the application IC (in flip-chip connection to a package substrate) and other ICs (in non-flip chip orientation), and package-on-package packaging of the application IC and the other ICs. The package substrate may include a first set of pads proximate to the application IC to support chip-on-chip connection to the other ICs. The pads may be connected to conductors that extend underneath the application IC, to connect to the application IC. A second set of pads may be connected to package pins for package-on-package solutions. If the chip-on-chip solution proves reliable, support for the package-on-package solution may be eliminated and the package substrate may be reduced in size.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: June 25, 2013
    Assignee: Apple Inc.
    Inventor: Vincent R. von Kaenel
  • Patent number: 8432185
    Abstract: Receiver circuits for differential and single-ended signals are disclosed. A receiver may include a differential amplifier configured to receive a first signal of a differential pair at a first input and a second signal of the differential pair at a second input when operating in differential mode, and a single-ended signal at the first input and a reference signal at a third input when operating in single-ended mode. The receiver may also include an inverter coupled to the differential amplifier. The inverter may be configured to provide a first beta ratio in differential mode and a second beta ratio in single-ended mode. Several receivers may be used, for example, to process a differential clock signal and one or more single-ended data signals referenced to the clock signal and/or differential data signals referenced to a single-ended clock signal. The rise/fall delays of each signal through each respective receiver may be independently adjusted.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: April 30, 2013
    Assignee: Apple Inc.
    Inventors: Gregory S. Scott, Vincent R. von Kaenel
  • Patent number: 8416635
    Abstract: In one embodiment, an integrated circuit includes at least one logic circuit supplied by a first supply voltage and at least one memory circuit coupled to the logic circuit and supplied by a second supply voltage. The memory circuit is configured to be read and written responsive to the logic circuit even if the first supply voltage is less than the second supply voltage during use. In another embodiment, a method includes a logic circuit reading a memory cell, the logic circuit supplied by a first supply voltage; and the memory cell responding to the read using signals that are referenced to the first supply voltage, wherein the memory cell is supplied with a second supply voltage that is greater than the first supply voltage during use.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 9, 2013
    Assignee: Apple Inc.
    Inventors: Brian J. Campbell, Vincent R. von Kaenel, Daniel C. Murray, Gregory S. Scott, Sribalan Santhanam
  • Patent number: 8410814
    Abstract: Receiver circuits for differential and single-ended signals are disclosed. In some embodiments, a receiver may include a first amplifier configured to receive a first signal of a differential pair of signals at a first input and a second signal of the differential pair of signals at a second input when operating in differential mode. The receiver may also include a second amplifier coupled to the first amplifier, where the second amplifier is configured to receive a reference signal at a third input and a single-ended signal at the first input when operating in single-ended mode. In some embodiments, several receivers may be used, for example, to process a differential clock signal and one or more single-ended data signals referenced to the clock signal and/or differential data signals referenced to a single-ended clock signal. In some embodiments, the delays of each signal propagating through each respective receiver may be independently adjusted.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: April 2, 2013
    Assignee: Apple Inc.
    Inventors: Gregory S. Scott, Vincent R. von Kaenel
  • Patent number: 8373470
    Abstract: Modular delay line blocks include a plurality of delay elements, each including a delay unit, an input, an output, a next element output, and an element return path. The delay elements are coupled together in a chain between a block input and a block output. The block input is coupled to the input of a first element in the chain and the block output is coupled to the output of the first element. In addition, the next element output of the first element is coupled to the element input of a next element in the chain, and the element output of the next delay element is coupled to the element return path of a previous element in the chain. In response to a selection control signal, each element may selectively route a signal from the element input to one of the next element output or to the element output.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: February 12, 2013
    Assignee: Apple Inc.
    Inventors: Pradeep R. Trivedi, Vincent R. von Kaenel
  • Patent number: 8368444
    Abstract: A delay locked loop (DLL) includes a delay line configured to provide a delayed version of a reference clock as a feedback clock. The DLL also includes a phase detector that may provide an output signal that is indicative of a change in a delay associated with the delay line. The DLL may also include a step size controller that may provide a step size indication corresponding to a first step size in response to detecting the output signal indicating a first change in delay, and to provide a step size indications corresponding to a second step size that is smaller than the first step size in response to detecting the output signal indicating a second change in delay.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: February 5, 2013
    Assignee: Apple Inc.
    Inventors: Pradeep R. Trivedi, Vincent R. von Kaenel
  • Patent number: 8362805
    Abstract: In an embodiment, an integrated circuit may include one or more power managed blocks and a power manager circuit. The power manager circuit may be configured to generate a block enable for each power managed block and a block enable clock. The power managed block may generate local block enables to various power switches in the power managed block, staggering the block enables over two or more block enable clock cycles. In particular, the power managed block may include a set of series-connected flops that receive the block enable from the power manager circuit. The output of each flop may be coupled to a respective set of power switches and may enabled those switches. The change in current flow due to enabling and/or disabling the power managed block may thus be controlled. In an embodiment, the frequency of the block enable clock may be set to a defined value independent of process, voltage, and temperature conditions in the integrated circuit.
    Type: Grant
    Filed: February 15, 2010
    Date of Patent: January 29, 2013
    Assignee: Apple Inc.
    Inventors: Shingo Suzuki, Vincent R. von Kaenel, Toshinari Takayanagi, Conrad H. Ziesler, Daniel C. Murray
  • Publication number: 20130020702
    Abstract: Semiconductor device modules having two or more integrated circuit dies mounted on opposing sides of a substrate. The integrated circuit dies are mounted by use of surface mount connections, such as flip chip connections implemented using conductive bumps. Systems may include one or more of the present semiconductor device modules, and in some cases may also include other modules, such as a system module.
    Type: Application
    Filed: July 21, 2011
    Publication date: January 24, 2013
    Inventors: Jun Zhai, Vincent R. von Kaenel
  • Publication number: 20130016575
    Abstract: In one embodiment, an integrated circuit includes at least one logic circuit supplied by a first supply voltage and at least one memory circuit coupled to the logic circuit and supplied by a second supply voltage. The memory circuit is configured to be read and written responsive to the logic circuit even if the first supply voltage is less than the second supply voltage during use. In another embodiment, a method includes a logic circuit reading a memory cell, the logic circuit supplied by a first supply voltage; and the memory cell responding to the read using signals that are referenced to the first supply voltage, wherein the memory cell is supplied with a second supply voltage that is greater than the first supply voltage during use.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 17, 2013
    Inventors: Brian J. Campbell, Vincent R. von Kaenel, Daniel C. Murray, Gregory S. Scott, Sribalan Santhanam
  • Patent number: 8354872
    Abstract: A switch circuit is disclosed. The switch circuit may include one or more arrangements of transistors coupled in a cascode configuration. The transistors used to implement the switch circuit may be configured for operation within a first range of voltages. The application in which the switch circuit may be implemented may require conveying signals within a second range of voltages that is greater than the first range of voltages. Thus, the switch circuit may include one or more additional transistors to ensure that a voltage drop between any two terminals of the transistors used in the switch circuit is within the first range of voltages.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: January 15, 2013
    Assignee: Apple Inc.
    Inventor: Vincent R. von Kaenel
  • Publication number: 20120319781
    Abstract: Receiver circuits for differential and single-ended signals are disclosed. In some embodiments, a receiver may include a first amplifier configured to receive a first signal of a differential pair of signals at a first input and a second signal of the differential pair of signals at a second input when operating in differential mode. The receiver may also include a second amplifier coupled to the first amplifier, where the second amplifier is configured to receive a reference signal at a third input and a single-ended signal at the first input when operating in single-ended mode. In some embodiments, several receivers may be used, for example, to process a differential clock signal and one or more single-ended data signals referenced to the clock signal and/or differential data signals referenced to a single-ended clock signal. In some embodiments, the delays of each signal propagating through each respective receiver may be independently adjusted.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 20, 2012
    Inventors: Gregory S. Scott, Vincent R. Von Kaenel
  • Patent number: 8327310
    Abstract: A software tool and method for analyzing the reliability or failure rate of an integrated circuit (IC) are disclosed. The IC may include a plurality of circuit designs, and the software tool and method may aid a designer of the IC in determining a reliability rating of the IC based on reliability ratings of transistors or other circuit devices used in the circuit designs. In particular, the IC may include one or more circuit designs that have multiple instances within the IC (i.e., the same circuit design is instantiated multiple times), and the software tool and method may take into account the multiple instances when determining the reliability rating of the IC.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: December 4, 2012
    Assignee: Apple Inc.
    Inventors: Antonietta Oliva, Gregory S. Scott, Edgardo F. Klass, Vincent R. von Kaenel
  • Publication number: 20120299653
    Abstract: Receiver circuits for differential and single-ended signals are disclosed. A receiver may include a differential amplifier configured to receive a first signal of a differential pair at a first input and a second signal of the differential pair at a second input when operating in differential mode, and a single-ended signal at the first input and a reference signal at a third input when operating in single-ended mode. The receiver may also include an inverter coupled to the differential amplifier. The inverter may be configured to provide a first beta ratio in differential mode and a second beta ratio in single-ended mode. Several receivers may be used, for example, to process a differential clock signal and one or more single-ended data signals referenced to the clock signal and/or differential data signals referenced to a single-ended clock signal. The rise/fall delays of each signal through each respective receiver may be independently adjusted.
    Type: Application
    Filed: May 25, 2011
    Publication date: November 29, 2012
    Inventors: Gregory S. Scott, Vincent R. von Kaenel
  • Publication number: 20120280723
    Abstract: An integrated circuit (IC) may be configured to communicate signals to an external device (e.g., a memory) via a driver. The driver may include a plurality of driver circuits arranged in parallel with respect to each other. Each driver circuit in turn may include a plurality of driver sub-circuits. Based, for example, on the load presented by the external device and/or operating conditions of the IC, a control circuit may provide signals that enable individual ones of driver circuits to result in a selected driver strength. The control circuit may also provide impedance control signals that enable or disable individual sub-circuits within one or more driver circuit, to thereby control the output impedance of each such driver circuit.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 8, 2012
    Inventors: Gregory S. Scott, Vincent R. von Kaenel
  • Patent number: 8307236
    Abstract: In one embodiment, an apparatus to synchronously communicate on an interface that has an associated interface clock for a circuit that has an internal clock used internal to the circuit comprises a control circuit coupled to receive the internal clock and the interface clock. The control circuit is configured to sample the interface clock multiple times per clock cycle of the internal clock and to detect a phase difference, to a granularity of the samples, between the internal clock and the interface clock. The apparatus comprises a data path that is configured to transport data between an internal clock domain and an interface clock domain. The data path is configured to provide at least two different timings on the transported data relative to the internal clock. The control circuit is coupled to the data path and is configured to select one of the timings responsive to a detected phase difference.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: November 6, 2012
    Assignee: Apple Inc.
    Inventors: Sridhar P. Subramanian, Sukalpa Biswas, Vincent R. von Kaenel, Priya Ananthanarayanan