Patents by Inventor Vincent R. von Kaenel

Vincent R. von Kaenel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11714480
    Abstract: A voltage regulator circuit included in a computer system may generate a voltage level on a power supply signal using a source power supply signal and based initial values of one or more operation parameters derived from wafer-level test data. One or more operation characteristics of the voltage regulator circuit may be sampled, by a measurement circuit, at multiple time points to generated measurement data. A control circuit may adapt operation of the voltage regulator circuit based on the measurement data.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: August 1, 2023
    Assignee: Apple Inc.
    Inventors: Jay B. Fletcher, Karthik Manickam, Bo Yang, Vincent R. von Kaenel, Shawn Searles, Hubert Attah, Nir Dahan, Olivier Girard
  • Publication number: 20220107680
    Abstract: A voltage regulator circuit included in a computer system may generate a voltage level on a power supply signal using a source power supply signal and based initial values of one or more operation parameters derived from wafer-level test data. One or more operation characteristics of the voltage regulator circuit may be sampled, by a measurement circuit, at multiple time points to generated measurement data. A control circuit may adapt operation of the voltage regulator circuit based on the measurement data.
    Type: Application
    Filed: October 12, 2021
    Publication date: April 7, 2022
    Inventors: Jay B. Fletcher, Karthik Manickam, Bo Yang, Vincent R. von Kaenel, Shawn Searles, Hubert Attah, Nir Dahan, Olivier Girard
  • Patent number: 11144110
    Abstract: A voltage regulator circuit included in a computer system may generate a voltage level on a power supply signal using a source power supply signal and based initial values of one or more operation parameters derived from wafer-level test data. One or more operation characteristics of the voltage regulator circuit may be sampled, by a measurement circuit, at multiple time points to generated measurement data. A control circuit may adapt operation of the voltage regulator circuit based on the measurement data.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: October 12, 2021
    Assignee: Apple Inc.
    Inventors: Jay B. Fletcher, Karthik Manickam, Bo Yang, Vincent R. von Kaenel, Shawn Searles, Hubert Attah, Nir Dahan, Olivier Girard
  • Publication number: 20200026345
    Abstract: A voltage regulator circuit included in a computer system may generate a voltage level on a power supply signal using a source power supply signal and based initial values of one or more operation parameters derived from wafer-level test data. One or more operation characteristics of the voltage regulator circuit may be sampled, by a measurement circuit, at multiple time points to generated measurement data. A control circuit may adapt operation of the voltage regulator circuit based on the measurement data.
    Type: Application
    Filed: July 19, 2018
    Publication date: January 23, 2020
    Inventors: Jay B. Fletcher, Karthik Manickam, Bo Yang, Vincent R. von Kaenel, Shawn Searles, Hubert Attah, Nir Dahan, Olivier Girard
  • Patent number: 10490265
    Abstract: In one embodiment, an integrated circuit includes at least one logic circuit supplied by a first supply voltage and at least one memory circuit coupled to the logic circuit and supplied by a second supply voltage. The memory circuit is configured to be read and written responsive to the logic circuit even if the first supply voltage is less than the second supply voltage during use. In another embodiment, a method includes a logic circuit reading a memory cell, the logic circuit supplied by a first supply voltage; and the memory cell responding to the read using signals that are referenced to the first supply voltage, wherein the memory cell is supplied with a second supply voltage that is greater than the first supply voltage during use.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: November 26, 2019
    Assignee: Apple Inc.
    Inventors: Brian J. Campbell, Vincent R. von Kaenel, Daniel C. Murray, Gregory S. Scott, Sribalan Santhanam
  • Patent number: 10482952
    Abstract: In one embodiment, an integrated circuit includes at least one logic circuit supplied by a first supply voltage and at least one memory circuit coupled to the logic circuit and supplied by a second supply voltage. The memory circuit is configured to be read and written responsive to the logic circuit even if the first supply voltage is less than the second supply voltage during use. In another embodiment, a method includes a logic circuit reading a memory cell, the logic circuit supplied by a first supply voltage; and the memory cell responding to the read using signals that are referenced to the first supply voltage, wherein the memory cell is supplied with a second supply voltage that is greater than the first supply voltage during use.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: November 19, 2019
    Assignee: Apple Inc.
    Inventors: Brian J. Campbell, Vincent R. von Kaenel, Daniel C. Murray, Gregory S. Scott, Sribalan Santhanam
  • Publication number: 20180130524
    Abstract: In one embodiment, an integrated circuit includes at least one logic circuit supplied by a first supply voltage and at least one memory circuit coupled to the logic circuit and supplied by a second supply voltage. The memory circuit is configured to be read and written responsive to the logic circuit even if the first supply voltage is less than the second supply voltage during use. In another embodiment, a method includes a logic circuit reading a memory cell, the logic circuit supplied by a first supply voltage; and the memory cell responding to the read using signals that are referenced to the first supply voltage, wherein the memory cell is supplied with a second supply voltage that is greater than the first supply voltage during use.
    Type: Application
    Filed: January 3, 2018
    Publication date: May 10, 2018
    Inventors: Brian J. Campbell, Vincent R. von Kaenel, Daniel C. Murray, Gregory S. Scott, Sribalan Santhanam
  • Publication number: 20170236578
    Abstract: In one embodiment, an integrated circuit includes at least one logic circuit supplied by a first supply voltage and at least one memory circuit coupled to the logic circuit and supplied by a second supply voltage. The memory circuit is configured to be read and written responsive to the logic circuit even if the first supply voltage is less than the second supply voltage during use. In another embodiment, a method includes a logic circuit reading a memory cell, the logic circuit supplied by a first supply voltage; and the memory cell responding to the read using signals that are referenced to the first supply voltage, wherein the memory cell is supplied with a second supply voltage that is greater than the first supply voltage during use.
    Type: Application
    Filed: May 1, 2017
    Publication date: August 17, 2017
    Inventors: Brian J. Campbell, Vincent R. von Kaenel, Daniel C. Murray, Gregory S. Scott, Sribalan Santhanam
  • Patent number: 9672901
    Abstract: In one embodiment, an integrated circuit includes at least one logic circuit supplied by a first supply voltage and at least one memory circuit coupled to the logic circuit and supplied by a second supply voltage. The memory circuit is configured to be read and written responsive to the logic circuit even if the first supply voltage is less than the second supply voltage during use. In another embodiment, a method includes a logic circuit reading a memory cell, the logic circuit supplied by a first supply voltage; and the memory cell responding to the read using signals that are referenced to the first supply voltage, wherein the memory cell is supplied with a second supply voltage that is greater than the first supply voltage during use.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: June 6, 2017
    Assignee: Apple Inc.
    Inventors: Brian J. Campbell, Vincent R. von Kaenel, Daniel C. Murray, Gregory S. Scott, Sribalan Santhanam
  • Publication number: 20160307621
    Abstract: In one embodiment, an integrated circuit includes at least one logic circuit supplied by a first supply voltage and at least one memory circuit coupled to the logic circuit and supplied by a second supply voltage. The memory circuit is configured to be read and written responsive to the logic circuit even if the first supply voltage is less than the second supply voltage during use. In another embodiment, a method includes a logic circuit reading a memory cell, the logic circuit supplied by a first supply voltage; and the memory cell responding to the read using signals that are referenced to the first supply voltage, wherein the memory cell is supplied with a second supply voltage that is greater than the first supply voltage during use.
    Type: Application
    Filed: April 20, 2016
    Publication date: October 20, 2016
    Inventors: Brian J. Campbell, Vincent R. von Kaenel, Daniel C. Murray, Gregory S. Scott, Sribalan Santhanam
  • Patent number: 9407262
    Abstract: In one embodiment, an integrated circuit includes a self calibration unit configured to iterate a test on a logic circuit in the integrated circuit at respectively lower supply voltage magnitudes until the test fails. A lowest supply voltage magnitude at which the test passes is used to generate a requested supply voltage magnitude for the integrated circuit. In an embodiment, an integrated circuit includes a series connection of logic gates physically distributed over an area of the integrated circuit, and a measurement unit configured to launch a logical transition into the series and detect a corresponding transition at the output of the series. The amount of time between the launch and the detection is used to request a supply voltage magnitude for the integrated circuit.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: August 2, 2016
    Assignee: Apple Inc.
    Inventor: Vincent R. von Kaenel
  • Patent number: 9343139
    Abstract: In one embodiment, an integrated circuit includes at least one logic circuit supplied by a first supply voltage and at least one memory circuit coupled to the logic circuit and supplied by a second supply voltage. The memory circuit is configured to be read and written responsive to the logic circuit even if the first supply voltage is less than the second supply voltage during use. In another embodiment, a method includes a logic circuit reading a memory cell, the logic circuit supplied by a first supply voltage; and the memory cell responding to the read using signals that are referenced to the first supply voltage, wherein the memory cell is supplied with a second supply voltage that is greater than the first supply voltage during use.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: May 17, 2016
    Assignee: Apple Inc.
    Inventors: Brian J. Campbell, Vincent R. von Kaenel, Daniel C. Murray, Gregory S. Scott, Sribalan Santhanam
  • Publication number: 20160072505
    Abstract: In one embodiment, an integrated circuit includes a self calibration unit configured to iterate a test on a logic circuit in the integrated circuit at respectively lower supply voltage magnitudes until the test fails. A lowest supply voltage magnitude at which the test passes is used to generate a requested supply voltage magnitude for the integrated circuit. In an embodiment, an integrated circuit includes a series connection of logic gates physically distributed over an area of the integrated circuit, and a measurement unit configured to launch a logical transition into the series and detect a corresponding transition at the output of the series. The amount of time between the launch and the detection is used to request a supply voltage magnitude for the integrated circuit.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 10, 2016
    Inventor: Vincent R. von Kaenel
  • Patent number: 9218049
    Abstract: In one embodiment, an integrated circuit includes a self calibration unit configured to iterate a test on a logic circuit in the integrated circuit at respectively lower supply voltage magnitudes until the test fails. A lowest supply voltage magnitude at which the test passes is used to generate a requested supply voltage magnitude for the integrated circuit. In an embodiment, an integrated circuit includes a series connection of logic gates physically distributed over an area of the integrated circuit, and a measurement unit configured to launch a logical transition into the series and detect a corresponding transition at the output of the series. The amount of time between the launch and the detection is used to request a supply voltage magnitude for the integrated circuit.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: December 22, 2015
    Assignee: Apple Inc.
    Inventor: Vincent R. von Kaenel
  • Publication number: 20150332754
    Abstract: In one embodiment, an integrated circuit includes at least one logic circuit supplied by a first supply voltage and at least one memory circuit coupled to the logic circuit and supplied by a second supply voltage. The memory circuit is configured to be read and written responsive to the logic circuit even if the first supply voltage is less than the second supply voltage during use. In another embodiment, a method includes a logic circuit reading a memory cell, the logic circuit supplied by a first supply voltage; and the memory cell responding to the read using signals that are referenced to the first supply voltage, wherein the memory cell is supplied with a second supply voltage that is greater than the first supply voltage during use.
    Type: Application
    Filed: July 24, 2015
    Publication date: November 19, 2015
    Inventors: Brian J. Campbell, Vincent R. von Kaenel, Daniel C. Murray, Gregory S. Scott, Sribalan Santhanam
  • Patent number: 9129708
    Abstract: In one embodiment, an integrated circuit includes at least one logic circuit supplied by a first supply voltage and at least one memory circuit coupled to the logic circuit and supplied by a second supply voltage. The memory circuit is configured to be read and written responsive to the logic circuit even if the first supply voltage is less than the second supply voltage during use. In another embodiment, a method includes a logic circuit reading a memory cell, the logic circuit supplied by a first supply voltage; and the memory cell responding to the read using signals that are referenced to the first supply voltage, wherein the memory cell is supplied with a second supply voltage that is greater than the first supply voltage during use.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: September 8, 2015
    Assignee: Apple Inc.
    Inventors: Brian J. Campbell, Vincent R. von Kaenel, Daniel C. Murray, Gregory S. Scott, Sribalan Santhanam
  • Publication number: 20140362639
    Abstract: In one embodiment, an integrated circuit includes at least one logic circuit supplied by a first supply voltage and at least one memory circuit coupled to the logic circuit and supplied by a second supply voltage. The memory circuit is configured to be read and written responsive to the logic circuit even if the first supply voltage is less than the second supply voltage during use. In another embodiment, a method includes a logic circuit reading a memory cell, the logic circuit supplied by a first supply voltage; and the memory cell responding to the read using signals that are referenced to the first supply voltage, wherein the memory cell is supplied with a second supply voltage that is greater than the first supply voltage during use.
    Type: Application
    Filed: August 25, 2014
    Publication date: December 11, 2014
    Inventors: Brian J. Campbell, Vincent R. von Kaenel, Daniel C. Murray, Gregory S. Scott, Sribalan Santhanam
  • Patent number: 8848463
    Abstract: In one embodiment, an integrated circuit includes at least one logic circuit supplied by a first supply voltage and at least one memory circuit coupled to the logic circuit and supplied by a second supply voltage. The memory circuit is configured to be read and written responsive to the logic circuit even if the first supply voltage is less than the second supply voltage during use. In another embodiment, a method includes a logic circuit reading a memory cell, the logic circuit supplied by a first supply voltage; and the memory cell responding to the read using signals that are referenced to the first supply voltage, wherein the memory cell is supplied with a second supply voltage that is greater than the first supply voltage during use.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: September 30, 2014
    Assignee: Apple Inc.
    Inventors: Brian J. Campbell, Vincent R. von Kaenel, Daniel C. Murray, Gregory S. Scott, Sribalan Santhanam
  • Publication number: 20140092676
    Abstract: In one embodiment, an integrated circuit includes at least one logic circuit supplied by a first supply voltage and at least one memory circuit coupled to the logic circuit and supplied by a second supply voltage. The memory circuit is configured to be read and written responsive to the logic circuit even if the first supply voltage is less than the second supply voltage during use. In another embodiment, a method includes a logic circuit reading a memory cell, the logic circuit supplied by a first supply voltage; and the memory cell responding to the read using signals that are referenced to the first supply voltage, wherein the memory cell is supplied with a second supply voltage that is greater than the first supply voltage during use.
    Type: Application
    Filed: December 3, 2013
    Publication date: April 3, 2014
    Applicant: Apple Inc.
    Inventors: Brian J. Campbell, Vincent R. von Kaenel, Daniel C. Murray, Gregory S. Scott, Sribalan Santhanam
  • Patent number: 8650527
    Abstract: A software tool and method for analyzing the reliability or failure rate of an integrated circuit (IC) are disclosed. The IC may include a plurality of circuit designs, and the software tool and method may aid a designer of the IC in determining a reliability rating of the IC based on reliability ratings of transistors or other circuit devices used in the circuit designs. In particular, the IC may include one or more circuit designs that have multiple instances within the IC (i.e., the same circuit design is instantiated multiple times), and the software tool and method may take into account the multiple instances when determining the reliability rating of the IC.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: February 11, 2014
    Assignee: Apple Inc.
    Inventors: Antonietta Oliva, Gregory S Scott, Edgardo F Klass, Vincent R von Kaenel