Patents by Inventor Viorel Ontalus

Viorel Ontalus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9349749
    Abstract: A semiconductor device comprises first and second gate stacks formed on a semiconductor-on-insulator (SOI) substrate. The SOI substrate includes a dielectric layer interposed between a bulk substrate layer and an active semiconductor layer. A first extension implant portion is disposed adjacent to the first gate stack and a second extension implant portion is disposed adjacent to the second gate stack. A halo implant extends continuously about the trench. A butting implant extends between the trench and the dielectric layer. An epitaxial layer is formed at the exposed region such that the butting implant is interposed between the epitaxial layer and the dielectric layer.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: May 24, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Viorel Ontalus, Robert R. Robison, Xin Wang
  • Patent number: 9287399
    Abstract: A faceted intrinsic buffer semiconductor material is deposited on sidewalls of a source trench and a drain trench by selective epitaxy. A facet adjoins each edge at which an outer sidewall of a gate spacer adjoins a sidewall of the source trench or the drain trench. A doped semiconductor material is subsequently deposited to fill the source trench and the drain trench. The doped semiconductor material can be deposited such that the facets of the intrinsic buffer semiconductor material are extended and inner sidewalls of the deposited doped semiconductor material merges in each of the source trench and the drain trench. The doped semiconductor material can subsequently grow upward. Faceted intrinsic buffer semiconductor material portions allow greater outdiffusion of dopants near faceted corners while suppressing diffusion of dopants in regions of uniform width, thereby suppressing short channel effects.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: March 15, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bhupesh Chandra, Paul Chang, Gregory G. Freeman, Dechao Guo, Judson R. Holt, Arvind Kumar, Timothy J. McArdle, Shreesh Narasimha, Viorel Ontalus, Sangameshwar Saudari, Christopher D. Sheraw, Matthew W. Stoker
  • Patent number: 9231108
    Abstract: Carbon-doped semiconductor material portions are formed on a subset of surfaces of underlying semiconductor surfaces contiguously connected to a channel of a field effect transistor. Carbon-doped semiconductor material portions can be formed by selective epitaxy of a carbon-containing semiconductor material layer or by shallow implantation of carbon atoms into surface portions of the underlying semiconductor surfaces. The carbon-doped semiconductor material portions can be deposited as layers and subsequently patterned by etching, or can be formed after formation of disposable masking spacers. Raised source and drain regions are formed on the carbon-doped semiconductor material portions and on physically exposed surfaces of the underlying semiconductor surfaces.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: January 5, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Pranita Kerber, Viorel Ontalus, Donald R. Wall, Zhengmao Zhu
  • Publication number: 20150364491
    Abstract: A semiconductor device comprises first and second gate stacks formed on a semiconductor-on-insulator (SOI) substrate. The SOI substrate includes a dielectric layer interposed between a bulk substrate layer and an active semiconductor layer. A first extension implant portion is disposed adjacent to the first gate stack and a second extension implant portion is disposed adjacent to the second gate stack. A halo implant extends continuously about the trench. A butting implant extends between the trench and the dielectric layer. An epitaxial layer is formed at the exposed region such that the butting implant is interposed between the epitaxial layer and the dielectric layer.
    Type: Application
    Filed: August 21, 2015
    Publication date: December 17, 2015
    Inventors: Viorel Ontalus, Robert R. Robison, Xin Wang
  • Patent number: 9171844
    Abstract: A metal gate structure with a channel material and methods of manufacture such structure is provided. The method includes forming dummy gate structures on a substrate. The method further includes forming sidewall structures on sidewalls of the dummy gate structures. The method further includes removing the dummy gate structures to form a first trench and a second trench, defined by the sidewall structures. The method further includes forming a channel material on the substrate in the first trench and in the second trench. The method further includes removing the channel material from the second trench while the first trench is masked. The method further includes filling remaining portions of the first trench and the second trench with gate material.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: October 27, 2015
    Assignee: GLOBALFOUNDRIES U.S. 2 LLC
    Inventors: Unoh Kwon, Ramachandran Muralidhar, Viorel Ontalus
  • Patent number: 9165944
    Abstract: A semiconductor device comprises first and second gate stacks formed on a semiconductor-on-insulator (SOI) substrate. The SOI substrate includes a dielectric layer interposed between a bulk substrate layer and an active semiconductor layer. A first extension implant portion is disposed adjacent to the first gate stack and a second extension implant portion is disposed adjacent to the second gate stack. A halo implant extends continuously about the trench. A butting implant extends between the trench and the dielectric layer. An epitaxial layer is formed at the exposed region such that the butting implant is interposed between the epitaxial layer and the dielectric layer.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: October 20, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Viorel Ontalus, Robert R. Robison, Xin Wang
  • Patent number: 9105718
    Abstract: A structure, a FET, a method of making the structure and of making the FET. The structure including: a silicon layer on a buried oxide (BOX) layer of a silicon-on-insulator substrate; a trench in the silicon layer extending from a top surface of the silicon layer into the silicon layer, the trench not extending to the BOX layer, a doped region in the silicon layer between and abutting the BOX layer and a bottom of the trench, the first doped region doped to a first dopant concentration; a first epitaxial layer, doped to a second dopant concentration, in a bottom of the trench; a second epitaxial layer, doped to a third dopant concentration, on the first epitaxial layer in the trench; and wherein the third dopant concentration is greater than the first and second dopant concentrations and the first dopant concentration is greater than the second dopant concentration.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: August 11, 2015
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey B. Johnson, Shreesh Narasimha, Hasan M. Nayfeh, Viorel Ontalus, Robert R. Robison
  • Publication number: 20150221724
    Abstract: Carbon-doped semiconductor material portions are formed on a subset of surfaces of underlying semiconductor surfaces contiguously connected to a channel of a field effect transistor. Carbon-doped semiconductor material portions can be formed by selective epitaxy of a carbon-containing semiconductor material layer or by shallow implantation of carbon atoms into surface portions of the underlying semiconductor surfaces. The carbon-doped semiconductor material portions can be deposited as layers and subsequently patterned by etching, or can be formed after formation of disposable masking spacers. Raised source and drain regions are formed on the carbon-doped semiconductor material portions and on physically exposed surfaces of the underlying semiconductor surfaces.
    Type: Application
    Filed: April 15, 2015
    Publication date: August 6, 2015
    Inventors: Pranita Kerber, Viorel Ontalus, Donald R. Wall, Zhengmao Zhu
  • Patent number: 9059292
    Abstract: Carbon-doped semiconductor material portions are formed on a subset of surfaces of underlying semiconductor surfaces contiguously connected to a channel of a field effect transistor. Carbon-doped semiconductor material portions can be formed by selective epitaxy of a carbon-containing semiconductor material layer or by shallow implantation of carbon atoms into surface portions of the underlying semiconductor surfaces. The carbon-doped semiconductor material portions can be deposited as layers and subsequently patterned by etching, or can be formed after formation of disposable masking spacers. Raised source and drain regions are formed on the carbon-doped semiconductor material portions and on physically exposed surfaces of the underlying semiconductor surfaces.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Viorel Ontalus, Pranita Kulkarni, Donald R. Wall, Zhengmao Zhu
  • Patent number: 9041119
    Abstract: A method of forming transistors with close proximity stressors to channel regions of the transistors is provided. The method includes forming a first transistor, in a first region of a substrate, having a gate stack on top of the first region of the substrate and a set of spacers adjacent to sidewalls of the gate stack, the first region including a source and drain region of the first transistor; forming a second transistor, in a second region of the substrate, having a gate stack on top of the second region of the substrate and a set of spacers adjacent to sidewalls of the gate stack, the second region including a source and drain region of the second transistor; covering the first transistor with a photo-resist mask without covering the second transistor; creating recesses in the source and drain regions of the second transistor; and forming stressors in the recesses.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: May 26, 2015
    Assignees: International Business Machines Corporation, GlobalFoundries, Inc.
    Inventors: Desmond J. Donegan, Jr., Abhishek Dube, Steven Jones, Jophy S. Koshy, Viorel Ontalus
  • Publication number: 20150097243
    Abstract: A semiconductor device comprises first and second gate stacks formed on a semiconductor-on-insulator (SOI) substrate. The SOI substrate includes a dielectric layer interposed between a bulk substrate layer and an active semiconductor layer. A first extension implant portion is disposed adjacent to the first gate stack and a second extension implant portion is disposed adjacent to the second gate stack. A halo implant extends continuously about the trench. A butting implant extends between the trench and the dielectric layer. An epitaxial layer is formed at the exposed region such that the butting implant is interposed between the epitaxial layer and the dielectric layer.
    Type: Application
    Filed: October 7, 2013
    Publication date: April 9, 2015
    Applicant: International Business Machines Corporation
    Inventors: Viorel Ontalus, Robert R. Robison, Xin Wang
  • Patent number: 8993395
    Abstract: A semiconductor structure and method for forming dielectric spacers and epitaxial layers for a complementary metal-oxide-semiconductor field effect transistor (CMOS transistor) are disclosed. Specifically, the structure and method involves forming dielectric spacers that are disposed in trenches and are adjacent to the silicon substrate, which minimizes leakage current. Furthermore, epitaxial layers are deposited to form source and drain regions, wherein the source region and drain regions are spaced at a distance from each other. The epitaxial layers are disposed adjacent to the dielectric spacers and the transistor body regions (i.e., portion of substrate below the gates), which can minimize transistor junction capacitance. Minimizing transistor junction capacitance can enhance the switching speed of the CMOS transistor.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: March 31, 2015
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, Ramachandran Muralidhar, Philip J. Oldiges, Viorel Ontalus
  • Publication number: 20150084096
    Abstract: A faceted intrinsic buffer semiconductor material is deposited on sidewalls of a source trench and a drain trench by selective epitaxy. A facet adjoins each edge at which an outer sidewall of a gate spacer adjoins a sidewall of the source trench or the drain trench. A doped semiconductor material is subsequently deposited to fill the source trench and the drain trench. The doped semiconductor material can be deposited such that the facets of the intrinsic buffer semiconductor material are extended and inner sidewalls of the deposited doped semiconductor material merges in each of the source trench and the drain trench. The doped semiconductor material can subsequently grow upward. Faceted intrinsic buffer semiconductor material portions allow greater outdiffusion of dopants near faceted corners while suppressing diffusion of dopants in regions of uniform width, thereby suppressing short channel effects.
    Type: Application
    Filed: October 7, 2014
    Publication date: March 26, 2015
    Inventors: Bhupesh Chandra, Paul Chang, Gregory G. Freeman, Dechao Guo, Judson R. Holt, Arvind Kumar, Timothy J. McArdle, Shreesh Narasimha, Viorel Ontalus, Sangameshwar Saudari, Christopher D. Sheraw, Matthew W. Stoker
  • Publication number: 20150044846
    Abstract: Carbon-doped semiconductor material portions are formed on a subset of surfaces of underlying semiconductor surfaces contiguously connected to a channel of a field effect transistor. Carbon-doped semiconductor material portions can be formed by selective epitaxy of a carbon-containing semiconductor material layer or by shallow implantation of carbon atoms into surface portions of the underlying semiconductor surfaces. The carbon-doped semiconductor material portions can be deposited as layers and subsequently patterned by etching, or can be formed after formation of disposable masking spacers. Raised source and drain regions are formed on the carbon-doped semiconductor material portions and on physically exposed surfaces of the underlying semiconductor surfaces.
    Type: Application
    Filed: September 18, 2014
    Publication date: February 12, 2015
    Inventors: Pranita Kerber, Viorel Ontalus, Donald R. Wall, Zhengmao Zhu
  • Patent number: 8940595
    Abstract: A faceted intrinsic buffer semiconductor material is deposited on sidewalls of a source trench and a drain trench by selective epitaxy. A facet adjoins each edge at which an outer sidewall of a gate spacer adjoins a sidewall of the source trench or the drain trench. A doped semiconductor material is subsequently deposited to fill the source trench and the drain trench. The doped semiconductor material can be deposited such that the facets of the intrinsic buffer semiconductor material are extended and inner sidewalls of the deposited doped semiconductor material merges in each of the source trench and the drain trench. The doped semiconductor material can subsequently grow upward. Faceted intrinsic buffer semiconductor material portions allow greater outdiffusion of dopants near faceted corners while suppressing diffusion of dopants in regions of uniform width, thereby suppressing short channel effects.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 27, 2015
    Assignee: International Business Machines Corporation
    Inventors: Bhupesh Chandra, Paul Chang, Gregory G. Freeman, Dechao Guo, Judson R. Holt, Arvind Kumar, Timothy J. McArdle, Shreesh Narasimha, Viorel Ontalus, Sangameshwar Rao Saudari, Christopher D. Sheraw, Matthew W. Stoker
  • Publication number: 20150014782
    Abstract: A metal gate structure with a channel material and methods of manufacture such structure is provided. The method includes forming dummy gate structures on a substrate. The method further includes forming sidewall structures on sidewalls of the dummy gate structures. The method further includes removing the dummy gate structures to form a first trench and a second trench, defined by the sidewall structures. The method further includes forming a channel material on the substrate in the first trench and in the second trench. The method further includes removing the channel material from the second trench while the first trench is masked. The method further includes filling remaining portions of the first trench and the second trench with gate material.
    Type: Application
    Filed: October 2, 2014
    Publication date: January 15, 2015
    Inventors: Unoh KWON, Ramachandran MURALIDHAR, Viorel ONTALUS
  • Patent number: 8895384
    Abstract: A metal gate structure with a channel material and methods of manufacture such structure is provided. The method includes forming dummy gate structures on a substrate. The method further includes forming sidewall structures on sidewalls of the dummy gate structures. The method further includes removing the dummy gate structures to form a first trench and a second trench, defined by the sidewall structures. The method further includes forming a channel material on the substrate in the first trench and in the second trench. The method further includes removing the channel material from the second trench while the first trench is masked. The method further includes filling remaining portions of the first trench and the second trench with gate material.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: November 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Unoh Kwon, Ramachandran Muralidhar, Viorel Ontalus
  • Publication number: 20140264558
    Abstract: A faceted intrinsic buffer semiconductor material is deposited on sidewalls of a source trench and a drain trench by selective epitaxy. A facet adjoins each edge at which an outer sidewall of a gate spacer adjoins a sidewall of the source trench or the drain trench. A doped semiconductor material is subsequently deposited to fill the source trench and the drain trench. The doped semiconductor material can be deposited such that the facets of the intrinsic buffer semiconductor material are extended and inner sidewalls of the deposited doped semiconductor material merges in each of the source trench and the drain trench. The doped semiconductor material can subsequently grow upward. Faceted intrinsic buffer semiconductor material portions allow greater outdiffusion of dopants near faceted corners while suppressing diffusion of dopants in regions of uniform width, thereby suppressing short channel effects.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bhupesh Chandra, Paul Chang, Gregory G. Freeman, Dechao Guo, Judson R. Holt, Arvind Kumar, Timothy J. McArdle, Shreesh Narasimha, Viorel Ontalus, Sangameshwar Rao Saudari, Christopher D. Sheraw, Matthew W. Stoker
  • Publication number: 20140203359
    Abstract: A structure, a FET, a method of making the structure and of making the FET. The structure including: a silicon layer on a buried oxide (BOX) layer of a silicon-on-insulator substrate; a trench in the silicon layer extending from a top surface of the silicon layer into the silicon layer, the trench not extending to the BOX layer, a doped region in the silicon layer between and abutting the BOX layer and a bottom of the trench, the first doped region doped to a first dopant concentration; a first epitaxial layer, doped to a second dopant concentration, in a bottom of the trench; a second epitaxial layer, doped to a third dopant concentration, on the first epitaxial layer in the trench; and wherein the third dopant concentration is greater than the first and second dopant concentrations and the first dopant concentration is greater than the second dopant concentration.
    Type: Application
    Filed: March 25, 2014
    Publication date: July 24, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey B. Johnson, Shreesh Narasimha, Hasan M. Nayfeh, Viorel Ontalus, Robert R. Robison
  • Patent number: 8741725
    Abstract: A structure, a FET, a method of making the structure and of making the FET. The structure including: a silicon layer on a buried oxide (BOX) layer of a silicon-on-insulator substrate; a trench in the silicon layer extending from a top surface of the silicon layer into the silicon layer, the trench not extending to the BOX layer, a doped region in the silicon layer between and abutting the BOX layer and a bottom of the trench, the first doped region doped to a first dopant concentration; a first epitaxial layer, doped to a second dopant concentration, in a bottom of the trench; a second epitaxial layer, doped to a third dopant concentration, on the first epitaxial layer in the trench; and wherein the third dopant concentration is greater than the first and second dopant concentrations and the first dopant concentration is greater than the second dopant concentration.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey B. Johnson, Shreesh Narasimha, Hasan M. Nayfeh, Viorel Ontalus, Robert R. Robison