Patents by Inventor Viorel Ontalus

Viorel Ontalus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120112280
    Abstract: A structure, a FET, a method of making the structure and of making the FET. The structure including: a silicon layer on a buried oxide (BOX) layer of a silicon-on-insulator substrate; a trench in the silicon layer extending from a top surface of the silicon layer into the silicon layer, the trench not extending to the BOX layer, a doped region in the silicon layer between and abutting the BOX layer and a bottom of the trench, the first doped region doped to a first dopant concentration; a first epitaxial layer, doped to a second dopant concentration, in a bottom of the trench; a second epitaxial layer, doped to a third dopant concentration, on the first epitaxial layer in the trench; and wherein the third dopant concentration is greater than the first and second dopant concentrations and the first dopant concentration is greater than the second dopant concentration.
    Type: Application
    Filed: November 10, 2010
    Publication date: May 10, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey B. Johnson, Shreesh Narasimha, Hasan M. Nayfeh, Viorel Ontalus, Robert R. Robison
  • Publication number: 20110260213
    Abstract: Semiconductor structures are disclosed that have embedded stressor elements therein. The disclosed structures include at least one FET gate stack located on an upper surface of a semiconductor substrate. The at least one FET gate stack includes source and drain extension regions located within the semiconductor substrate at a footprint of the at least one FET gate stack. A device channel is also present between the source and drain extension regions and beneath the at least one gate stack. The structure further includes embedded stressor elements located on opposite sides of the at least one FET gate stack and within the semiconductor substrate. Each of the embedded stressor elements includes a lower layer of a first epitaxy doped semiconductor material having a lattice constant that is different from a lattice constant of the semiconductor substrate and imparts a strain in the device channel, and an upper layer of a second epitaxy doped semiconductor material located atop the lower layer.
    Type: Application
    Filed: April 21, 2010
    Publication date: October 27, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. Chan, Abhishek Dube, Judson R. Holt, Jinghong Li, Joseph S. Newbury, Viorel Ontalus, Dae-Gyu Park, Zhengmao Zhu
  • Patent number: 8035141
    Abstract: A semiconductor structure including a bi-layer nFET embedded stressor element is disclosed. The bi-layer nFET embedded stressor element can be integrated into any CMOS process flow. The bi-layer nFET embedded stressor element includes an implant damaged free first layer of a first epitaxy semiconductor material having a lattice constant that is different from a lattice constant of a semiconductor substrate and imparts a tensile strain in a device channel of an nFET gate stack. Typically, and when the semiconductor is composed of silicon, the first layer of the bi-layer nFET embedded stressor element is composed of Si:C. The bi-layer nFET embedded stressor element further includes a second layer of a second epitaxy semiconductor material that has a lower resistance to dopant diffusion than the first epitaxy semiconductor material. Typically, and when the semiconductor is composed of silicon, the second layer of the bi-layer nFET embedded stressor element is composed of silicon.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: October 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Abhishek Dube, Jinghong Li, Viorel Ontalus, Zhengmao Zhu
  • Publication number: 20110101506
    Abstract: A structure for memorizing tensile stress in a semiconductor device includes a gate electrode of the semiconductor device; a silicon spacer adjacent to the gate electrode; and a capping layer encapsulating the gate electrode and the silicon spacer, wherein the silicon spacer and capping layer are configured to cause a tensile stress to be memorized in the gate electrode during an annealing process. A method for memorizing tensile stress in a semiconductor device includes forming a silicon spacer adjacent to a gate electrode of the semiconductor device; forming a capping layer over the silicon spacer and the gate electrode; and annealing the semiconductor device, wherein the silicon spacer and capping layer cause a tensile stress to be memorized in the gate electrode during annealing. A disposable silicon spacer is configured to induce a tensile stress in a semiconductor device during a stress memorization technique process.
    Type: Application
    Filed: October 29, 2009
    Publication date: May 5, 2011
    Applicant: International Business Machines Corporation
    Inventors: Shahid A. Butt, Viorel Ontalus, Robert R. Robison
  • Publication number: 20110095343
    Abstract: A semiconductor structure including a bi-layer nFET embedded stressor element is disclosed. The bi-layer nFET embedded stressor element can be integrated into any CMOS process flow. The bi-layer nFET embedded stressor element includes an implant damaged free first layer of a first epitaxy semiconductor material having a lattice constant that is different from a lattice constant of a semiconductor substrate and imparts a tensile strain in a device channel of an nFET gate stack. Typically, and when the semiconductor is composed of silicon, the first layer of the bi-layer nFET embedded stressor element is composed of Si:C. The bi-layer nFET embedded stressor element further includes a second layer of a second epitaxy semiconductor material that has a lower resistance to dopant diffusion than the first epitaxy semiconductor material. Typically, and when the semiconductor is composed of silicon, the second layer of the bi-layer nFET embedded stressor element is composed of silicon.
    Type: Application
    Filed: October 28, 2009
    Publication date: April 28, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. Chan, Abhishek Dube, Jinghong Li, Viorel Ontalus, Zhengmao Zhu
  • Publication number: 20110027956
    Abstract: A method of fabricating a device using a sequence of annealing processes is provided. More particularly, a logic NFET device fabricated using a low temperature anneal to eliminate dislocation defects, method of fabricating the NFET device and design structure is shown and described. The method includes forming a stress liner over a gate structure and subjecting the gate structure and stress liner to a low temperature anneal process to form a stacking force in single crystalline silicon near the gate structure as a way to memorized the stress effort. The method further includes stripping the stress liner from the gate structure and performing an activation anneal at high temperature on device.
    Type: Application
    Filed: July 29, 2009
    Publication date: February 3, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony G. DOMENICUCCI, Terence L. KANE, Shreesh NARASIMHA, Karen A. NUMMY, Viorel ONTALUS, Yun-Yu WANG
  • Patent number: 7855110
    Abstract: An FET and method of fabricating an FET. The method includes forming a gate dielectric layer on a top surface of a silicon region of a substrate and forming a gate electrode on a top surface of the gate dielectric layer; forming a source and a drain in the silicon region and separated by a channel region under the gate electrode, the source having a source extension extending under the gate electrode and the drain having a drain extension extending under the gate electrode, the source, source extension, drain and drain extension doped a first type; and forming a source delta region contained entirely within the source and forming a drain delta region contained entirely within the drain, the delta source region and the delta drain region doped a second dopant type, the second dopant type opposite from the first dopant type.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: December 21, 2010
    Assignee: International Business Machines Corporation
    Inventors: Viorel Ontalus, Robert Robison
  • Patent number: 7687338
    Abstract: Embodiments of the invention provide a method of forming embedded silicon germanium (eSiGe) in source and drain regions of a p-type field-effect-transistor (pFET) through a disposable spacer process; depositing a gap-filling layer directly on the eSiGe in the source and drain regions in a first process; depositing a layer of offset spacer material on top of the gap-filling layer in a second process different from the first process; etching the offset spacer material and the gap-filling layer, thus forming a set of offset spacers and exposing the eSiGe in the source and drain regions of the pFET; and finishing formation of the pFET.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: March 30, 2010
    Assignee: International Business Machines Corporation
    Inventors: Sameer Jain, Shreesh Narasimha, Karen A. Nummy, Viorel Ontalus, Jang H. Sim
  • Publication number: 20100006952
    Abstract: An FET and method of fabricating an FET. The method includes forming a gate dielectric layer on a top surface of a silicon region of a substrate and forming a gate electrode on a top surface of the gate dielectric layer; forming a source and a drain in the silicon region of and separated by a channel region under the gate electrode, the source having a source extension extending under the gate electrode and the drain having a drain extension extending under the gate electrode, the source, source extension, drain and drain extension doped a first type; and forming a source delta region contained entirely within the source and forming a drain delta region contained entirely within the drain, the delta source region and the delta drain region doped a second dopant type, the second dopant type opposite from the first dopant type.
    Type: Application
    Filed: July 8, 2008
    Publication date: January 14, 2010
    Inventors: Viorel Ontalus, Robert Robison
  • Publication number: 20090148988
    Abstract: Embodiments of the invention provide a method of forming embedded silicon germanium (eSiGe) in source and drain regions of a p-type field-effect-transistor (pFET) through a disposable spacer process; depositing a gap-filling layer directly on the eSiGe in the source and drain regions in a first process; depositing a layer of offset spacer material on top of the gap-filling layer in a second process different from the first process; etching the offset spacer material and the gap-filling layer, thus forming a set of offset spacers and exposing the eSiGe in the source and drain regions of the pFET; and finishing formation of the pFET.
    Type: Application
    Filed: December 5, 2007
    Publication date: June 11, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sameer Jain, Shreesh Narasimha, Karen A. Nummy, Viorel Ontalus, Jang H. Sim
  • Patent number: 7502658
    Abstract: An exemplary method for performing fabrication sequence analysis, the method comprising, defining a process group, wherein a process group includes fabrication processes in a fabrication sequence, determining fabrication process paths in the process group to define independent variables, wherein a process path is a plurality of fabrication equipment used to fabricate a particular semiconductor device in the fabrication sequence, receiving a dependent variable for the fabrication sequence, performing analysis of variance to calculate a p-value for the process group, determining whether the p-value is lower than a threshold value, identifying a poor process path responsive to determining that the p-value is lower than a threshold value, and outputting the identified poor process path.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: March 10, 2009
    Assignee: International Business Machines Corporation
    Inventors: Steven G. Barbee, Jeong W. Nam, Viorel Ontalus, Yuusheng Song
  • Patent number: 7337033
    Abstract: A tool with one or more chambers in a manufacturing system is identified as performing at or below an acceptable level by the following steps. Store process data from tools for each one of a plurality of individual processes for a processed object in a process database. Store tool performance data for each individual process for a processed object in a yield database. Develop statistics for similar tool sets associating data with each of the similar tool units. Generate yield numbers for each group of the similar tool units based upon the statistics. Identify poorly/well performing tool units by using the yield numbers.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: February 26, 2008
    Assignee: International Business Machines Corporation
    Inventors: Viorel Ontalus, Jeong Woo Nam, Yunsheng Song
  • Publication number: 20080033589
    Abstract: A tool with one or more chambers in a manufacturing system is identified as performing at or below an acceptable level by the following steps: Store process data from tools for each one of a plurality of individual processes for a processed object in a process database; Store tool performance data for each individual process for a processed object in a yield database; Develop statistics for similar tool sets associating data with each of the similar tool units; Generate yield numbers for each group of the similar tool units based upon the statistics; and identify poorly/well performing tool units by using the yield numbers.
    Type: Application
    Filed: July 28, 2006
    Publication date: February 7, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Viorel Ontalus, Jeong Woo Nam, Yunsheng Song