Patents by Inventor Viren KALSEKAR

Viren KALSEKAR has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12062526
    Abstract: Exemplary substrate processing systems may include a chamber body defining a transfer region. The systems may include a lid plate seated on the chamber body along a first surface of the lid plate. The lid plate may define a plurality of apertures through the lid plate. The lid plate may further define a recess about each aperture of the plurality of apertures in the first surface of the lid plate. Each recess may extend partially through a thickness of the lid plate. The systems may include a plurality of lid stacks equal to a number of apertures of the plurality of apertures. Each recess may receive at least a portion of one of the lid stacks of the plurality of lid stacks. The plurality of lid stacks may at least partially define a plurality of processing regions vertically offset from the transfer region.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: August 13, 2024
    Assignee: Applied Materials, Inc.
    Inventor: Viren Kalsekar
  • Publication number: 20240186121
    Abstract: Exemplary choke plates for use in a substrate processing system may include a plate defining a first aperture through the plate and a second aperture through the plate. The second aperture may be laterally offset from the first aperture. The plate may include a flange that defines a purging inlet. The plate may include a rim defining a plurality of purging outlets that are fluidly coupled with the purging inlet. Each of the plurality of purging outlets may be fluidly coupled with the first aperture.
    Type: Application
    Filed: December 6, 2022
    Publication date: June 6, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Vellaichamy Nagappan, Viren Kalsekar, Jeongmin Lee, Vinay K. Prabhakar, Pratap Chandran, Dharma Ratnam Srichurnam, Azhar Khan, Sumit Subhash Singh, Siva Chandrasekar, Satish Radhakrishnan
  • Patent number: 11984305
    Abstract: A substrate pedestal includes a thermally conductive substrate support including a mesh, a thermally conductive shaft including a plurality of conductive rods therein, each conductive rod having a first end and a second end, and a sensor. The first end of each conductive rod is electrically coupled to the mesh, and the sensor is disposed between the first and second ends of each conductive rod and configured to detect current flow through each conductive rod.
    Type: Grant
    Filed: January 2, 2023
    Date of Patent: May 14, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Viren Kalsekar, Vinay K. Prabhakar, Venkata Sharat Chandra Parimi
  • Patent number: 11699602
    Abstract: Exemplary substrate support assemblies may include a platen characterized by a first surface configured to support a semiconductor substrate. The assemblies may include a first stem section coupled with a second surface of the platen opposite the first surface of the platen. The assemblies may include a second stem section coupled with the first stem section. The second stem section may include a housing and a rod holder disposed within the housing. The second stem section may include a connector seated within the rod holder at a first end of the connector. The second stem section may include a heater rod disposed within the first end of the connector and a heater extension rod coupled with the connector at a second end of the connector. The second stem section may include an RF rod and an RF strap coupling the RF rod with an RF extension rod.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: July 11, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Jian Li, Edward P. Hammond, Viren Kalsekar, Vidyadharan Srinivasa Murthy Bangalore, Juan Carlos Rocha-Alvarez
  • Publication number: 20230170190
    Abstract: Embodiments of the present disclosure generally relate to substrate supports for process chambers and RF grounding configurations for use therewith. Methods of grounding RF current are also described. A chamber body at least partially defines a process volume therein. A first electrode is disposed in the process volume. A pedestal is disposed opposite the first electrode. A second electrode is disposed in the pedestal. An RF filter is coupled to the second electrode through a conductive rod. The RF filter includes a first capacitor coupled to the conductive rod and to ground. The RF filter also includes a first inductor coupled to a feedthrough box. The feedthrough box includes a second capacitor and a second inductor coupled in series. A direct current (DC) power supply for the second electrode is coupled between the second capacitor and the second inductor.
    Type: Application
    Filed: January 26, 2023
    Publication date: June 1, 2023
    Inventors: Satya THOKACHICHU, Edward P. HAMMOND, IV, Viren KALSEKAR, Zheng John YE, Abdul Aziz KHAJA, Vinay K. PRABHAKAR
  • Publication number: 20230151487
    Abstract: The present disclosure relates to systems and methods for reducing the formation of hardware residue and minimizing secondary plasma formation during substrate processing in a process chamber. The process chamber may include a gas distribution member configured to flow a first gas into a process volume and generate a plasma therefrom. A second gas is supplied into a lower region of the process volume. Further, an exhaust port is disposed in the lower region to remove excess gases or by-products from the process volume during or after processing.
    Type: Application
    Filed: January 20, 2023
    Publication date: May 18, 2023
    Inventors: Liangfa HU, Prashant Kumar KULSHRESHTHA, Anjana M. PATEL, Abdul Aziz KHAJA, Viren KALSEKAR, Vinay K. PRABHAKAR, Satya Teja Babu THOKACHICHU, Byung Seok KWON, Ratsamee LIMDULPAIBOON, Kwangduk Douglas LEE, Ganesh BALASUBRAMANIAN
  • Publication number: 20230147452
    Abstract: A substrate pedestal includes a thermally conductive substrate support including a mesh, a thermally conductive shaft including a plurality of conductive rods therein, each conductive rod having a first end and a second end, and a sensor. The first end of each conductive rod is electrically coupled to the mesh, and the sensor is disposed between the first and second ends of each conductive rod and configured to detect current flow through each conductive rod.
    Type: Application
    Filed: January 2, 2023
    Publication date: May 11, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Viren KALSEKAR, Vinay K. PRABHAKAR, Venkata Sharat Chandra PARIMI
  • Patent number: 11626303
    Abstract: Exemplary substrate processing systems may include a chamber body defining a transfer region. The systems may include a first lid plate seated on the chamber body along a first surface of the first lid plate. The first lid plate may define a plurality of apertures through the first lid plate. The systems may include a plurality of lid stacks equal to a number of apertures of the plurality of apertures. The plurality of lid stacks may at least partially define a plurality of processing regions vertically offset from the transfer region. The systems may include a second lid plate coupled with the plurality of lid stacks. The plurality of lid stacks may be positioned between the first lid plate and the second lid plate. A component of each lid stack of the plurality of lid stacks may be coupled with the second lid plate.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: April 11, 2023
    Assignee: Applied Materials, Inc.
    Inventor: Viren Kalsekar
  • Publication number: 20230069317
    Abstract: Exemplary substrate processing systems may include a chamber body defining a transfer region. The systems may include a lid plate seated on the chamber body. The lid plate may define a first plurality of apertures and a second plurality of apertures. The systems may include a plurality of lid stacks equal to a number of the first plurality of apertures. Each lid stack may include a choke plate seated on the lid plate along a first surface of the choke plate. The choke plate may define a first aperture axially aligned with an associated aperture of the first plurality of apertures. The choke plate may define a second aperture axially aligned with an associated aperture of the second plurality of apertures. The choke plate may define protrusions extending from each of a top and bottom surface of the choke plate that are arranged substantially symmetrically about the first aperture.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 2, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Siva Chandrasekar, Satish Radhakrishnan, Viren Kalsekar, Vellaichamy Nagappan, Vinay K. Prabhakar
  • Patent number: 11587773
    Abstract: A substrate pedestal includes a thermally conductive substrate support including a mesh, a thermally conductive shaft including a plurality of conductive rods therein, each conductive rod having a first end and a second end, and a sensor. The first end of each conductive rod is electrically coupled to the mesh, and the sensor is disposed between the first and second ends of each conductive rod and configured to detect current flow through each conductive rod.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: February 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Viren Kalsekar, Vinay K. Prabhakar, Venkata Sharat Chandra Parimi
  • Patent number: 11569072
    Abstract: Embodiments of the present disclosure generally relate to substrate supports for process chambers and RF grounding configurations for use therewith. Methods of grounding RF current are also described. A chamber body at least partially defines a process volume therein. A first electrode is disposed in the process volume. A pedestal is disposed opposite the first electrode. A second electrode is disposed in the pedestal. An RF filter is coupled to the second electrode through a conductive rod. The RF filter includes a first capacitor coupled to the conductive rod and to ground. The RF filter also includes a first inductor coupled to a feedthrough box. The feedthrough box includes a second capacitor and a second inductor coupled in series. A direct current (DC) power supply for the second electrode is coupled between the second capacitor and the second inductor.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: January 31, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Satya Thokachichu, Edward P. Hammond, IV, Viren Kalsekar, Zheng John Ye, Abdul Aziz Khaja, Vinay K. Prabhakar
  • Patent number: 11560623
    Abstract: The present disclosure relates to systems and methods for reducing the formation of hardware residue and minimizing secondary plasma formation during substrate processing in a process chamber. The process chamber may include a gas distribution member configured to flow a first gas into a process volume and generate a plasma therefrom. A second gas is supplied into a lower region of the process volume. Further, an exhaust port is disposed in the lower region to remove excess gases or by-products from the process volume during or after processing.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: January 24, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Liangfa Hu, Prashant Kumar Kulshreshtha, Anjana M. Patel, Abdul Aziz Khaja, Viren Kalsekar, Vinay K. Prabhakar, Satya Teja Babu Thokachichu, Byung Seok Kwon, Ratsamee Limdulpaiboon, Kwangduk Douglas Lee, Ganesh Balasubramanian
  • Patent number: 11515176
    Abstract: Exemplary substrate processing systems may include chamber body defining a transfer region. The systems may include a lid plate seated on the chamber body. The lid plate may define a first plurality of apertures through the lid plate and a second plurality of apertures through the lid plate. The systems may include a plurality of lid stacks equal to a number of apertures of the first plurality of apertures defined through the lid plate. Each lid stack of the plurality of lid stacks may include a choke plate seated on the lid plate along a first surface of the choke plate. The choke plate may define a first aperture axially aligned with an associated aperture of the first plurality of apertures. The choke plate may define a second aperture axially aligned with an associated aperture of the second plurality of apertures.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: November 29, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Siva Chandrasekar, Satish Radhakrishnan, Rajath Kumar Lakkenahalli Hiriyannaiah, Viren Kalsekar, Vinay Prabhakar
  • Publication number: 20220130649
    Abstract: Exemplary substrate processing systems may include a chamber body defining a transfer region. The systems may include a lid plate seated on the chamber body along a first surface of the lid plate. The lid plate may define a plurality of apertures through the lid plate. The lid plate may further define a recess about each aperture of the plurality of apertures in the first surface of the lid plate. Each recess may extend partially through a thickness of the lid plate. The systems may include a plurality of lid stacks equal to a number of apertures of the plurality of apertures. Each recess may receive at least a portion of one of the lid stacks of the plurality of lid stacks. The plurality of lid stacks may at least partially define a plurality of processing regions vertically offset from the transfer region.
    Type: Application
    Filed: October 22, 2020
    Publication date: April 28, 2022
    Applicant: Applied Materials, Inc.
    Inventor: Viren Kalsekar
  • Publication number: 20220093426
    Abstract: Exemplary substrate processing systems may include a base. The systems may include a chamber body having a transfer region housing that defines a transfer region. The transfer region housing may include a first portion and a second portion. The systems may include a lid assembly positioned atop the chamber body. The lid assembly may include a lid and a lid stack. The systems may include one or more lift mechanisms that elevate the first portion of the transfer region housing and at least a portion of the lid assembly relative to the base. The first portion and the second portion may mate with one another when the transfer region housing is in an operational configuration. The first portion and the second portion may be separated when the first portion of the transfer region housing is elevated.
    Type: Application
    Filed: September 21, 2020
    Publication date: March 24, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Samuel W. Shannon, Luke Bonecutter, Viren Kalsekar, Chahal Neema
  • Publication number: 20220020615
    Abstract: Exemplary substrate processing systems may include a plurality of processing regions. The systems may include a transfer region housing defining a transfer region fluidly coupled with the plurality of processing regions. The systems may include a plurality of substrate supports. Each substrate support of the plurality of substrate supports may be vertically translatable between the transfer region and an associated processing region of the plurality of processing regions. The systems may include a transfer apparatus including a rotatable shaft extending through the transfer region housing. The transfer apparatus may also include an end effector coupled with the rotatable shaft. The systems may include an exhaust foreline including a plurality of foreline tails. Each foreline tail of the plurality of foreline tails may be fluidly coupled with a separate processing region of the plurality of processing regions. The systems may include a plurality of throttle valves.
    Type: Application
    Filed: July 19, 2020
    Publication date: January 20, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Nitin Pathak, Vinay K. Prabhakar, Badri N. Ramamurthi, Viren Kalsekar, Juan Carlos Rocha-Alvarez
  • Publication number: 20220013373
    Abstract: Exemplary substrate support assemblies may include a platen characterized by a first surface configured to support a semiconductor substrate. The assemblies may include a first stem section coupled with a second surface of the platen opposite the first surface of the platen. The assemblies may include a second stem section coupled with the first stem section. The second stem section may include a housing and a rod holder disposed within the housing. The second stem section may include a connector seated within the rod holder at a first end of the connector. The second stem section may include a heater rod disposed within the first end of the connector and a heater extension rod coupled with the connector at a second end of the connector. The second stem section may include an RF rod and an RF strap coupling the RF rod with an RF extension rod.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 13, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Jian Li, Edward P. Hammond, Viren Kalsekar, Vidyadharan Srinivasa Murthy Bangalore, Juan Carlos Rocha-Alvarez
  • Publication number: 20210335635
    Abstract: Exemplary substrate processing systems may include a chamber body defining a transfer region. The systems may include a first lid plate seated on the chamber body along a first surface of the first lid plate. The first lid plate may define a plurality of apertures through the first lid plate. The systems may include a plurality of lid stacks equal to a number of apertures of the plurality of apertures. The plurality of lid stacks may at least partially define a plurality of processing regions vertically offset from the transfer region. The systems may include a second lid plate coupled with the plurality of lid stacks. The plurality of lid stacks may be positioned between the first lid plate and the second lid plate. A component of each lid stack of the plurality of lid stacks may be coupled with the second lid plate.
    Type: Application
    Filed: April 23, 2020
    Publication date: October 28, 2021
    Applicant: Applied Materials, Inc.
    Inventor: Viren Kalsekar
  • Publication number: 20210320017
    Abstract: Exemplary substrate processing systems may include a plurality of processing regions. The systems may include a transfer region housing defining a transfer region fluidly coupled with the plurality of processing regions. The systems may include a plurality of substrate supports, and each substrate support of the plurality of substrate supports may be vertically translatable between the transfer region and an associated processing region of the plurality of processing regions. The systems may include a transfer apparatus including a rotatable shaft extending through the transfer region housing. The transfer apparatus may include an end effector coupled with the rotatable shaft. The end effector may include a central hub defining a central aperture fluidly coupled with a purge source. The end effector may also include a plurality of arms having a number of arms equal to a number of substrate supports of the plurality of substrate supports.
    Type: Application
    Filed: April 9, 2020
    Publication date: October 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Nitin Pathak, Vinay Prabhakar, Badri N. Ramamurthi, Viren Kalsekar, Tuan A. Nguyen, Juan Carlos Rocha-Alvarez
  • Publication number: 20210320018
    Abstract: Exemplary substrate processing systems may include chamber body defining a transfer region. The systems may include a lid plate seated on the chamber body. The lid plate may define a first plurality of apertures through the lid plate and a second plurality of apertures through the lid plate. The systems may include a plurality of lid stacks equal to a number of apertures of the first plurality of apertures defined through the lid plate. Each lid stack of the plurality of lid stacks may include a choke plate seated on the lid plate along a first surface of the choke plate. The choke plate may define a first aperture axially aligned with an associated aperture of the first plurality of apertures. The choke plate may define a second aperture axially aligned with an associated aperture of the second plurality of apertures.
    Type: Application
    Filed: April 14, 2020
    Publication date: October 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Siva Chandrasekar, Satish Radhakrishnan, Rajath Kumar Lakkenahalli Hiriyannaiah, Viren Kalsekar, Vinay Prabhakar