Patents by Inventor Vivian W. Ryan

Vivian W. Ryan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140210088
    Abstract: A semiconductor device includes a recess defined in a dielectric layer, the recess having an upper sidewall portion extending to an upper corner of the recess and a lower sidewall portion below the upper sidewall portion. An interconnect structure is positioned in the recess. The interconnect structure includes a continuous liner layer having upper and lower layer portions positioned laterally adjacent to the upper and lower sidewall portions, respectively. The upper layer portion includes an alloy of a first transition metal and a second transition metal and the lower layer portion includes the second transition metal but not the first transition metal. The interconnect structure also includes a fill material substantially filling the recess, wherein the second transition metal has a higher wettability for the fill material than the alloy.
    Type: Application
    Filed: March 27, 2014
    Publication date: July 31, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Xunyuan Zhang, Hoon Kim, Vivian W. Ryan
  • Patent number: 8772158
    Abstract: The present disclosure is generally directed to multi-layer barrier layer stacks for interconnect structures that may be used to reduce mechanical stress levels between the interconnect structure and a dielectric material layer in which the interconnect structure is formed. One illustrative method disclosed herein includes forming a recess in a dielectric layer of a substrate and forming an adhesion barrier layer including an alloy of tantalum and at least one transition metal other than tantalum to line the recess, wherein forming the adhesion barrier layer includes creating a first stress level across a first interface between the adhesion barrier layer and the dielectric layer. The method also includes forming a stress-reducing barrier layer including tantalum over the adhesion barrier layer, wherein the stress-reducing barrier layer reduces the first stress level to a second stress level less than the first stress level, and filling the recess with a fill layer.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: July 8, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Vivian W. Ryan, Xunyuan Zhang, Paul R. Besser
  • Publication number: 20140145330
    Abstract: A semiconductor chip includes at least one integrated circuit device and a bond pad that is electrically connected to the at least one integrated circuit device. The bond pad has an irregular configuration when viewed from above that corresponds to a first area portion that is defined by a first substantially regular geometric shape when viewed from above and a second area portion adjacent to the first area portion. The second area portion is located at a greater distance from a centerline of the semiconductor chip than any part of the first area portion when viewed from above, and two sides of the first area portion are substantially aligned with and substantially flush with two respective sides of the second area portion.
    Type: Application
    Filed: January 31, 2014
    Publication date: May 29, 2014
    Applicant: GLOBLAFOUNDRIES INC.
    Inventor: Vivian W. Ryan
  • Patent number: 8728931
    Abstract: A method for forming an interconnect structure includes forming a recess in a dielectric layer of a substrate. An adhesion barrier layer is formed to line the recess. A first stress level is present across a first interface between the adhesion barrier layer and the dielectric layer. A stress-reducing barrier layer is formed over the adhesion barrier layer. The stress-reducing barrier layer reduces the first stress level to provide a second stress level, less than the first stress level, across a second interface between the adhesion barrier layer, the stress-reducing barrier layer, and the dielectric layer. The recess is filled with a fill layer.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: May 20, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Vivian W. Ryan, Xunyuan Zhang, Paul R. Besser
  • Patent number: 8722534
    Abstract: A method for forming an interconnect structure includes forming a recess in a dielectric layer of a substrate, forming a first transition metal layer in the recess on corner portions of the recess, and forming a second transition metal layer in the recess over the first transition metal layer to line the recess. The method further includes filling the recess with a fill layer and annealing the substrate so that the first transition metal layer and the second transition metal layer form an alloy portion proximate the corner portions during the annealing, the alloy portion having a reduced wettability for a material of the fill layer than the second transition metal. Additionally, the method includes polishing the substrate to remove portions of the fill layer extending above the recess.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: May 13, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Xunyuan Zhang, Hoon Kim, Vivian W. Ryan
  • Patent number: 8680681
    Abstract: A semiconductor chip includes a composite bond pad that is electrically connected to at least one integrated circuit device. The composite bond pad includes a first bond pad portion having a first upper surface corresponding to a first surface area that is defined by a first substantially regular geometric shape when viewed from above that has a first area centroid that is located a first distance from a center of the semiconductor chip, and further includes a second bond pad portion positioned above the first upper surface and having a second upper surface that extends above the first upper surface, the second portion corresponding to a second surface area that is defined by at least a part of a second substantially regular geometric shape when viewed from above that has a second area centroid that is located a second distance from the center that is greater than the first distance.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: March 25, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Vivian W. Ryan
  • Publication number: 20140077368
    Abstract: A system for repairing pillar bumps includes a pillar bump repair device that is adapted to form a plurality of strain-relieving notches in a pillar bump that is positioned above a metallization system of a semiconductor chip. The system further includes a pillar bump support device that is adapted to substantially support the pillar bump while the pillar bump repair device is forming each of the plurality of strain-relieving notches.
    Type: Application
    Filed: November 19, 2013
    Publication date: March 20, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Vivian W. Ryan, Holm Geisler, Dirk Breuer
  • Publication number: 20140027902
    Abstract: Generally, the subject matter disclosed herein relates to repairing anomalous stiff pillar bumps that may be detected above a metallization system of a semiconductor chip or wafer. One illustrative method disclosed herein includes, among other things, forming a pillar bump above a metallization system of a semiconductor chip, and forming a plurality of notches in the pillar bump, wherein the plurality of notches are adapted to adjust a flexibility of the pillar bump when the pillar bump is exposed to a lateral force.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 30, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Vivian W. Ryan, Holm Geisler, Dirk Breuer
  • Publication number: 20140026676
    Abstract: Generally, the subject matter herein relates to detecting the presence of weak BEOL sites in a metallization system. One disclosed method includes performing a lateral force test on a pillar bump formed above a metallization system of a semiconductor chip, which includes contacting the pillar bump with a test probe while moving the test probe at a substantially constant speed that is less than approximately 1 ?m/sec along a path that is oriented at a substantially non-zero angle relative to a plane of the metallization system. Furthermore, the test probe is moving substantially away from the metallization system so that a force imposed on the pillar bump by the test probe has an upward component that induces a tensile load on the metallization system. The disclosed method also includes determining a behavioral interaction between the pillar bump and the metallization system during the lateral force test.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 30, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Vivian W. Ryan, Holm Geisler, Dirk Breuer
  • Publication number: 20140026675
    Abstract: Generally, the subject matter disclosed herein relates to testing pillar bumps formed on a semiconductor chip so as to detect the presence of anomalous stiff pillar bumps. One illustrative method disclosed herein includes positioning a test probe adjacent to a side of a pillar bump formed above a metallization system of a semiconductor chip, and performing a lateral force test on the pillar bump by contacting the side of the pillar bump with the test probe while moving the test probe at a substantially constant speed that is less than approximately 1 ?m/sec.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 30, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Vivian W. Ryan, Holm Geisler, Dirk Breuer
  • Publication number: 20140027910
    Abstract: A method for forming an interconnect structure includes forming a recess in a dielectric layer of a substrate, forming a first transition metal layer in the recess on corner portions of the recess, and forming a second transition metal layer in the recess over the first transition metal layer to line the recess. The method further includes filling the recess with a fill layer and annealing the substrate so that the first transition metal layer and the second transition metal layer form an alloy portion proximate the corner portions during the annealing, the alloy portion having a reduced wettability for a material of the fill layer than the second transition metal. Additionally, the method includes polishing the substrate to remove portions of the fill layer extending above the recess.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Xunyuan Zhang, Hoon Kim, Vivian W. Ryan
  • Publication number: 20140021615
    Abstract: The present disclosure is generally directed to multi-layer barrier layer stacks for interconnect structures that may be used to reduce mechanical stress levels between the interconnect structure and a dielectric material layer in which the interconnect structure is formed. One illustrative method disclosed herein includes forming a recess in a dielectric layer of a substrate and forming an adhesion barrier layer including an alloy of tantalum and at least one transition metal other than tantalum to line the recess, wherein forming the adhesion barrier layer includes creating a first stress level across a first interface between the adhesion barrier layer and the dielectric layer. The method also includes forming a stress-reducing barrier layer including tantalum over the adhesion barrier layer, wherein the stress-reducing barrier layer reduces the first stress level to a second stress level less than the first stress level, and filling the recess with a fill layer.
    Type: Application
    Filed: February 19, 2013
    Publication date: January 23, 2014
    Inventors: Vivian W. Ryan, Xunyuan Zhang, Paul R. Besser
  • Publication number: 20140024212
    Abstract: A method for forming an interconnect structure includes forming a recess in a dielectric layer of a substrate. An adhesion barrier layer is formed to line the recess. A first stress level is present across a first interface between the adhesion barrier layer and the dielectric layer. A stress-reducing barrier layer is formed over the adhesion barrier layer. The stress-reducing barrier layer reduces the first stress level to provide a second stress level, less than the first stress level, across a second interface between the adhesion barrier layer, the stress-reducing barrier layer, and the dielectric layer. The recess is filled with a fill layer.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Vivian W. Ryan, Xunyuan Zhang, Paul R. Besser
  • Publication number: 20140021613
    Abstract: A method for forming an interconnect structure includes forming a recess in a dielectric layer of a substrate. An adhesion barrier layer is formed to line the recess. A first stress level is present across a first interface between the adhesion barrier layer and the dielectric layer. A stress-reducing barrier layer is formed over the adhesion barrier layer. The stress-reducing barrier layer reduces the first stress level to provide a second stress level, less than the first stress level, across a second interface between the adhesion barrier layer, the stress-reducing barrier layer, and the dielectric layer. The recess is filled with a fill layer.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Vivian W. Ryan, Xunyuan Zhang, Paul R. Besser
  • Patent number: 8623754
    Abstract: Generally, the subject matter disclosed herein relates to repairing anomalous stiff pillar bumps that may be detected above a metallization system of a semiconductor chip or wafer. One illustrative method disclosed herein includes, among other things, forming a pillar bump above a metallization system of a semiconductor chip, and forming a plurality of notches in the pillar bump, wherein the plurality of notches are adapted to adjust a flexibility of the pillar bump when the pillar bump is exposed to a lateral force.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: January 7, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Vivian W. Ryan, Holm Geisler, Dirk Breuer
  • Patent number: 8623758
    Abstract: A method includes forming an adhesion barrier layer over a dielectric layer formed on a substrate. A first stress level is present across a first interface between the adhesion barrier layer and the dielectric layer. A stress-reducing barrier layer is formed over the adhesion barrier layer. The stress-reducing barrier layer reduces the first stress level to provide a second stress level, less than the first stress level, across a second interface between the adhesion barrier layer, the stress-reducing barrier layer, and the dielectric layer. A metal layer is formed over the stress-reducing barrier layer. The metal layer, adhesion barrier layer, and stress-reducing barrier layer define an interconnect metal stack. Recesses are defined in the interconnect metal stack to expose the dielectric layer. The recesses are filled with a dielectric material, wherein a portion of the interconnect metal stack disposed between adjacent recessed filled with dielectric material defines an interconnect structure.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: January 7, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Vivian W. Ryan, Xunyuan Zhang, Paul R. Besser
  • Publication number: 20130334532
    Abstract: In one example, a stress gauge for an integrated circuit product is disclosed that includes a layer of insulating material, a body positioned at least partially in the layer of insulating material, wherein the body is comprised of a material having a piezoelectric constant of at least about 0.1 pm/V, and a plurality of spaced apart conductive contacts, each of which is conductively coupled to the body.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 19, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Xunyuan Zhang, Vivian W. Ryan
  • Patent number: 8441131
    Abstract: Generally, the subject matter disclosed herein relates to sophisticated semiconductor chips that may be less susceptible to the occurrence of white bumps during semiconductor chip packaging operations, such as flip-chip or 3D-chip assembly, and the like. One illustrative semiconductor chip disclosed herein includes, among other things, a bond pad and a metallization layer below the bond pad, wherein the metallization layer is made up of a bond pad area below the bond pad and a field area surrounding the bond pad area. Additionally, the semiconductor device also includes a plurality of device features in the metallization layer, wherein the plurality of device features has a first feature density in the bond pad area and a second feature density in the field area that is less than the first feature density.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: May 14, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Vivian W. Ryan
  • Publication number: 20130062775
    Abstract: Generally, the subject matter disclosed herein relates to sophisticated semiconductor chips that may be less susceptible to the occurrence of white bumps during semiconductor chip packaging operations, such as flip-chip or 3D-chip assembly, and the like. One illustrative semiconductor chip disclosed herein includes, among other things, a bond pad and a metallization layer below the bond pad, wherein the metallization layer is made up of a bond pad area below the bond pad and a field area surrounding the bond pad area. Additionally, the semiconductor device also includes a plurality of device features in the metallization layer, wherein the plurality of device features has a first feature density in the bond pad area and a second feature density in the field area that is less than the first feature density.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 14, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventor: Vivian W. Ryan
  • Publication number: 20130049206
    Abstract: Generally, the subject matter disclosed herein relates to sophisticated semiconductor chips that may be less susceptible to the occurrence of white bumps during semiconductor chip packaging operations, such as flip-chip or 3D-chip assembly, and the like. One illustrative semiconductor chip disclosed herein includes at least one integrated circuit device and a bond pad that is electrically connected to the at least one integrated circuit device. Furthermore, the bond pad has an irregular overall configuration when viewed from above that corresponds to a first area portion that is defined by a first substantially regular geometric shape when viewed from above and a second area portion adjacent to the first area portion. Additionally, the second area portion is located at a greater distance from a centerline of the semiconductor chip than any part of the first area portion when viewed from above, and the bond pad is electrically connected to the at least one integrated circuit device.
    Type: Application
    Filed: August 26, 2011
    Publication date: February 28, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventor: Vivian W. Ryan