Patents by Inventor Vladimir Zubkov

Vladimir Zubkov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8778816
    Abstract: Methods for preparing a substrate for a subsequent film formation process are described. Methods for preparing a substrate for a subsequent film formation process, without immersion in an aqueous solution, are also described. A process is described that includes disposing a substrate into a process chamber, the substrate having a thermal oxide surface with substantially no reactive surface terminations. The thermal oxide surface is exposed to a partial pressure of water below the saturated vapor pressure at a temperature of the substrate to convert the dense thermal oxide with substantially no reactive surface terminations to a surface with hydroxyl surface terminations. This can occur in the presence of a Lewis base such as ammonia.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: July 15, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Tatsuya E. Sato, David Thompson, Jeffrey W. Anthis, Vladimir Zubkov, Steven Verhaverbeke, Roman Gouk, Maitreyee Mahajani, Patricia M. Liu, Malcolm J. Bevan
  • Patent number: 8753989
    Abstract: High tensile stress in a deposited layer, such as a silicon nitride layer, may be achieved utilizing one or more techniques employed either alone or in combination. In one embodiment, a silicon nitride film having high tensile stress may be formed by depositing the silicon nitride film in the presence of a porogen. The deposited silicon nitride film may be exposed to at least one treatment selected from a plasma or ultraviolet radiation to liberate the porogen. The silicon nitride film may be densified such that a pore resulting from liberation of the porogen is reduced in size, and Si—N bonds in the silicon nitride film are strained to impart a tensile stress in the silicon nitride film. In another embodiment, tensile stress in a silicon nitride film may be enhanced by depositing a silicon nitride film in the presence of a nitrogen-containing plasma at a temperature of less than about 400° C., and exposing the deposited silicon nitride film to ultraviolet radiation.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: June 17, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Michael S. Cox, Li-Qun Xia, Mei-Yee Shek, Jia Lee, Vladimir Zubkov, Tzu-Fang Huang, Rongping Wang, Isabelita Roflox, Hichem M'Saad
  • Patent number: 8501568
    Abstract: A methods of forming a flash memory device are provided. The flash memory device comprises a silicon dioxide layer on a substrate and a silicon nitride layer that is formed on the silicon dioxide layer. The properties of the silicon nitride layer can be modified by any of: exposing the silicon nitride layer to ultraviolet radiation, exposing the silicon nitride layer to an electron beam, and by plasma treating the silicon nitride layer. A dielectric material is deposited on the silicon nitride layer and a conductive date is formed over the dielectric material. The flash memory device with modified silicon nitride layer provides an increase in charge holding capacity and charge retention time of the unit cell of a non-volatile memory device.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: August 6, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Vladimir Zubkov, Li-Qun Xia, Atif Noori, Reza Arghavani, Derek R. Witty, Amir Al-Bayati
  • Patent number: 8343881
    Abstract: A silicon dioxide layer is deposited onto a substrate using a process gas comprising BDEAS and an oxygen-containing gas such as ozone. The silicon dioxide layer can be part of an etch-resistant stack that includes a resist layer. In another version, the silicon dioxide layer is deposited into through holes to form an oxide liner for through-silicon vias.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: January 1, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Yong-Won Lee, Vladimir Zubkov, Mei-Yee Shek, Li-Qun Xia, Prahallad Iyengar, Sanjeev Baluja, Scott A Hendrickson, Juan Carlos Rocha-Alvarez, Thomas Nowak, Derek R Witty
  • Patent number: 8252653
    Abstract: A flash memory device and methods of forming a flash memory device are provided. The flash memory device includes a doped silicon nitride layer having a dopant comprising carbon, boron or oxygen. The doped silicon nitride layer generates a higher number and higher concentration of nitrogen and silicon dangling bonds in the layer and provides an increase in charge holding capacity and charge retention time of the unit cell of a non-volatile memory device.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: August 28, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Vladimir Zubkov, Li-Qun Xia, Atif Noori, Reza Arghavani, Derek R. Witty, Amir Al-Bayati
  • Publication number: 20120202357
    Abstract: Methods for preparing a substrate for a subsequent film formation process are described. Methods for preparing a substrate for a subsequent film formation process, without immersion in an aqueous solution, are also described. A process is described that includes disposing a substrate into a process chamber, the substrate having a thermal oxide surface with substantially no reactive surface terminations. The thermal oxide surface is exposed to a partial pressure of water above the saturated vapor pressure at a temperature of the substrate to convert the dense thermal oxide with substantially no reactive surface terminations to a surface with hydroxyl surface terminations. This can occur in the presence of a Lewis base such as ammonia.
    Type: Application
    Filed: July 27, 2011
    Publication date: August 9, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Tatsuya E. Sato, David Thompson, Jeffrey W. Anthis, Vladimir Zubkov, Steven Verhaverbeke, Roman Gouk, Maitreyee Mahajani, Patricia M. Liu, Malcolm J. Bevan
  • Publication number: 20120196452
    Abstract: High tensile stress in a deposited layer, such as a silicon nitride layer, may be achieved utilizing one or more techniques employed either alone or in combination. In one embodiment, a silicon nitride film having high tensile stress may be formed by depositing the silicon nitride film in the presence of a porogen. The deposited silicon nitride film may be exposed to at least one treatment selected from a plasma or ultraviolet radiation to liberate the porogen. The silicon nitride film may be densified such that a pore resulting from liberation of the porogen is reduced in size, and Si—N bonds in the silicon nitride film are strained to impart a tensile stress in the silicon nitride film. In another embodiment, tensile stress in a silicon nitride film may be enhanced by depositing a silicon nitride film in the presence of a nitrogen-containing plasma at a temperature of less than about 400° C., and exposing the deposited silicon nitride film to ultraviolet radiation.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 2, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Michael S. Cox, Li-Qun Xia, Mei-Yee Shek, Jia Lee, Vladimir Zubkov, Tzu-Fang Huang, Rongping Wang, Isabelita Roflox, Hichem M'Saad
  • Patent number: 8129290
    Abstract: High tensile stress in a deposited layer such as silicon nitride, may be achieved utilizing one or more techniques, employed alone or in combination. High tensile stress may be achieved by forming a silicon-containing layer on a surface by exposing the surface to a silicon-containing precursor gas in the absence of a plasma, forming silicon nitride by exposing said silicon-containing layer to a nitrogen-containing plasma, and then repeating these steps to increase a thickness of the silicon nitride created thereby. High tensile stress may also be achieved by exposing a surface to a silicon-containing precursor gas in a first nitrogen-containing plasma, treating the material with a second nitrogen-containing plasma, and then repeating these steps to increase a thickness of the silicon nitride formed thereby. In another embodiment, tensile film stress is enhanced by deposition with porogens that are liberated upon subsequent exposure to UV radiation or plasma treatment.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: March 6, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Michael S. Cox, Li-Qun Xia, Mei-Yee Shek, Jia Lee, Vladimir Zubkov, Tzu-Fang Huang, Rongping Wang, Isabelita Roflox, Hichem M'Saad
  • Publication number: 20110298099
    Abstract: A silicon dioxide layer is deposited onto a substrate using a process gas comprising BDEAS and an oxygen-containing gas such as ozone. The silicon dioxide layer can be part of an etch-resistant stack that includes a resist layer. In another version, the silicon dioxide layer is deposited into through holes to form an oxide liner for through-silicon vias.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 8, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Yong-Won LEE, Vladimir Zubkov, Mei-Yee SHEK, Li-Qun XIA, Prahallad IYENGAR, Sanjeev BALUJA, Scott A. HENDRICKSON, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Derek R. WITTY
  • Patent number: 7829455
    Abstract: A barrier layer for a semiconductor device is provided. The semiconductor device comprises a dielectric layer, an electrically conductive copper containing layer, and a barrier layer separating the dielectric layer from the copper containing layer. The barrier layer comprises a silicon oxide layer and a dopant, where the dopant is a divalent ion, which dopes the silicon oxide layer adjacent to the copper containing layer. A method of forming a barrier layer is provided. A silicon oxide layer with a surface is provided. The surface of the silicon oxide layer is doped with a divalent ion to form a barrier layer extending to the surface of the silicon oxide layer. An electrically conductive copper containing layer is formed on the surface of the barrier layer, where the barrier layer prevents diffusion of copper into the substrate.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: November 9, 2010
    Assignee: LSI Corporation
    Inventors: Vladimir Zubkov, Sheldon Aronowitz
  • Patent number: 7816205
    Abstract: A flash memory device and method of forming a flash memory device are provided. The flash memory device includes a silicon nitride layer having a compositional gradient in which the ratio of silicon to nitrogen varies through the thickness of the layer. The silicon nitride layer having a compositional gradient of silicon and nitrogen provides an increase in charge holding capacity and charge retention time of the unit cell of a non-volatile memory device.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: October 19, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Vladimir Zubkov, Li-Qun Xia, Atif Noori, Reza Arghavani, Derek R. Witty, Amir Al-Bayati
  • Patent number: 7790635
    Abstract: A method for forming a compressive stress carbon-doped silicon nitride layer is provided. The method includes forming an initiation layer and a bulk layer thereon, wherein the bulk layer has a compressive stress of between about ?0.1 GPa and about ?10 GPa. The initiation layer is deposited from a gas mixture that includes a silicon and carbon-containing precursor and optionally a nitrogen and/or source but does not include hydrogen gas. The bulk layer is deposited from a gas mixture that includes a silicon and carbon-containing precursor, a nitrogen source, and hydrogen gas. The initiation layer is a thin layer that allows good transfer of the compressive stress of the bulk layer therethrough to an underlying layer, such as a channel of a transistor.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: September 7, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Victor T. Nguyen, Li-Qun Xia, Vladimir Zubkov, Derek R. Witty, Hichem M'Saad
  • Patent number: 7732342
    Abstract: Compressive stress in a film of a semiconductor device may be controlled utilizing one or more techniques, employed alone or in combination. A first set of embodiments increase silicon nitride compressive stress by adding hydrogen to the deposition chemistry, and reduce defects in a device fabricated with a high compressive stress silicon nitride film formed in the presence of hydrogen gas. A silicon nitride film may comprise an initiation layer formed in the absence of a hydrogen gas flow, underlying a high stress nitride layer formed in the presence of a hydrogen gas flow. A silicon nitride film formed in accordance with an embodiment of the present invention may exhibit a compressive stress of 2.8 GPa or higher.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: June 8, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Li-Qun Xia, Vladimir Zubkov, Mei-Yee Shek, Isabelita Rolfox, Hichem M'Saad
  • Patent number: 7718548
    Abstract: A process to form a copper-silicon-nitride layer on a copper surface on a semiconductor wafer is described. The process may include the step of exposing the wafer to a first plasma made from helium. The process may also include exposing the wafer to a second plasma made from a reducing gas, where the second plasma removes copper oxide from the copper surface, and exposing the wafer to silane, where the silane reacts with the copper surface to selectively form copper silicide. The process may further include exposing the wafer to a third plasma made from ammonia and molecular nitrogen to form the copper silicon nitride layer.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: May 18, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Sang M. Lee, Vladimir Zubkov, Zhenijiang Cui, Meiyee Shek, Li-Qun Xia, Hichem M'Saad
  • Publication number: 20100096688
    Abstract: A flash memory device and method of forming a flash memory device are provided. The flash memory device includes a silicon nitride layer having a compositional gradient in which the ratio of silicon to nitrogen varies through the thickness of the layer. The silicon nitride layer having a compositional gradient of silicon and nitrogen provides an increase in charge holding capacity and charge retention time of the unit cell of a non-volatile memory device.
    Type: Application
    Filed: October 22, 2008
    Publication date: April 22, 2010
    Inventors: Mihaela Balseanu, Vladimir Zubkov, Li-Qun Xia, Atif Noori, Reza Arghavani, Derek R. Witty, Amir Al-Bayati
  • Publication number: 20100096687
    Abstract: A flash memory device and methods of forming a flash memory device are provided. The flash memory device includes a doped silicon nitride layer having a dopant comprising carbon, boron or oxygen. The doped silicon nitride layer generates a higher number and higher concentration of nitrogen and silicon dangling bonds in the layer and provides an increase in charge holding capacity and charge retention time of the unit cell of a non-volatile memory device.
    Type: Application
    Filed: October 21, 2008
    Publication date: April 22, 2010
    Inventors: Mihaela BALSEANU, Vladimir Zubkov, Li-Qun Xia, Atif Noori, Reza Arghavani, Derek R. Witty, Amir Al-Bayati
  • Publication number: 20100099247
    Abstract: A methods of forming a flash memory device are provided. The flash memory device comprises a silicon dioxide layer on a substrate and a silicon nitride layer that is formed on the silicon dioxide layer. The properties of the silicon nitride layer can be modified by any of: exposing the silicon nitride layer to ultraviolet radiation, exposing the silicon nitride layer to an electron beam, and by plasma treating the silicon nitride layer. A dielectric material is deposited on the silicon nitride layer and a conductive date is formed over the dielectric material. The flash memory device with modified silicon nitride layer provides an increase in charge holding capacity and charge retention time of the unit cell of a non-volatile memory device.
    Type: Application
    Filed: October 22, 2008
    Publication date: April 22, 2010
    Inventors: Mihaela Balseanu, Vladimir Zubkov, Li-Qun Xia, Atif Noori, Reza Arghavani, Derek R. Witty, Amir Al-Bayati
  • Publication number: 20080213997
    Abstract: A process to form a copper-silicon-nitride layer on a copper surface on a semiconductor wafer is described. The process may include the step of exposing the wafer to a first plasma made from helium. The process may also include exposing the wafer to a second plasma made from a reducing gas, where the second plasma removes copper oxide from the copper surface, and exposing the wafer to silane, where the silane reacts with the copper surface to selectively form copper silicide. The process may further include exposing the wafer to a third plasma made from ammonia and molecular nitrogen to form the copper silicon nitride layer.
    Type: Application
    Filed: December 5, 2007
    Publication date: September 4, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Sang M. Lee, Vladimir Zubkov, Zhenijiang Cui, Meiyee Shek, Li-Qun Xia, Hichem M'Saad
  • Publication number: 20080146007
    Abstract: A method for forming a compressive stress carbon-doped silicon nitride layer is provided. The method includes forming an initiation layer and a bulk layer thereon, wherein the bulk layer has a compressive stress of between about ?0.1 GPa and about ?10 GPa. The initiation layer is deposited from a gas mixture that includes a silicon and carbon-containing precursor and optionally a nitrogen and/or source but does not include hydrogen gas. The bulk layer is deposited from a gas mixture that includes a silicon and carbon-containing precursor, a nitrogen source, and hydrogen gas. The initiation layer is a thin layer that allows good transfer of the compressive stress of the bulk layer therethrough to an underlying layer, such as a channel of a transistor.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 19, 2008
    Inventors: Mihaela Balseanu, Victor T. Nguyen, Li-Qun Xia, Vladimir Zubkov, Derek R. Witty, Hichem M'Saad
  • Publication number: 20080034025
    Abstract: A method is provided for development of independent multivariate calibration models used for determination of secondary properties of a sample based on results of measurements of plurality of primary properties of the sample on target instrument. The method allows development of an independent calibration model for the target instrument regarding results of measurements of plurality of primary properties for sufficient amount of calibration samples with known secondary properties at the reference instrument. In this method, a set of transfer samples are selected, and a plurality of measurements of primary properties are made for each transfer sample using both reference and target instruments. Then relationships of transformation are generated from comparison of the target and reference instruments responses to the transfer samples.
    Type: Application
    Filed: July 4, 2005
    Publication date: February 7, 2008
    Inventors: Vladimir Zubkov, Konstantin Zharinov, Aleksandr Shamrai