Patents by Inventor Warren M. Farnworth

Warren M. Farnworth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7594322
    Abstract: A method of fabricating a substrate is disclosed. Apertures are formed in a substrate blank. A conductive layer is formed on opposing surfaces of the substrate, as well as inside the apertures. Conductive elements are defined on one or both opposing surfaces by masking and etching. Additional layers of conductive materials may be used to provide a barrier layer and a noble metal cap for the conductive elements. The methods of the present invention may be used to fabricate an interposer for use in packaging semiconductor devices or a test substrate. Substrate precursor structures are also disclosed.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: September 29, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Steven M. McDonald, Nishant Sinha, William M. Hiatt
  • Patent number: 7591069
    Abstract: Methods and apparatuses for bonding solder balls to bond pads are described. In one embodiment, portions of a plurality of solder balls are placed within a frame and in registered alignment with individual bond pads over a substrate. While the ball portions are within the frame, the balls are exposed to bonding conditions effective to bond the balls with their associated bond pads. In another embodiment, a frame is provided having a plurality of holes sized to receive individual solder balls. Individual balls are delivered into the holes from over the frame. The balls are placed into registered alignment with a plurality of individual bond pads over a substrate while the balls are in the holes. The balls are bonded with the individual associated bond pads.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: September 22, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Alan G. Wood
  • Patent number: 7589010
    Abstract: Methods of manufacturing semiconductor devices using permanent or temporary polymer layers having apertures to expose contact pads and cover the active surfaces of the semiconductor devices.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: September 15, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Alan G. Wood, James M. Wark, David R. Hembree, Syed Sajid Ahmad, Michael E. Hess, John O. Jacobson
  • Publication number: 20090224404
    Abstract: A method for fabricating a semiconductor component with through interconnects can include the steps of providing a semiconductor substrate with substrate contacts, and forming openings from a backside of the substrate aligned with the substrate contacts. The method can also include the steps of providing an interposer substrate (or alternately a second semiconductor substrate), forming projections on the interposer substrate (or on the second semiconductor substrate), and forming conductive vias in the projections. The method can also include the steps of placing the projections in physical contact with the openings, and placing the conductive vias in electrical contact with the substrate contacts. The method can also include the steps of bonding the conductive vias to the substrate contacts, and forming terminal contacts on the interposer substrate (or alternately on one of the semiconductor substrates) in electrical communication with the conductive vias.
    Type: Application
    Filed: March 27, 2009
    Publication date: September 10, 2009
    Inventors: Alan G. Wood, Warren M. Farnworth, David R. Hembree
  • Patent number: 7569418
    Abstract: A method for securing a semiconductor device to a carrier substrate includes inserting a semiconductor device with a plurality of stub contacts extending from a bottom edge thereof into a receptacle of an alignment device associated with the carrier substrate. Upon attachment of the alignment device to a carrier substrate and insertion of a vertically mountable semiconductor device into the receptacle, the semiconductor device is biased so as to establish and maintain electrical communication between the semiconductor device and the carrier substrate.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: August 4, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Larry D. Kinsman, Walter L. Moden, Warren M. Farnworth
  • Publication number: 20090191701
    Abstract: Microelectronic devices, methods for packaging microelectronic devices, and methods for forming interconnects in microelectronic devices are disclosed herein. In one embodiment, a method comprises providing a microelectronic substrate having a front side and a backside. The substrate has a microelectronic die including an integrated circuit and a terminal operatively coupled to the integrated circuit. The method also includes forming a passage at least partially through the substrate and having an opening at the front side and/or backside of the substrate. The method further includes sealing the opening with a conductive cap that closes one end of the passage while another end of the passage remains open. The method then includes filling the passage with a conductive material.
    Type: Application
    Filed: April 6, 2009
    Publication date: July 30, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Kyle K. Kirby, Salman Akram, David R. Hembree, Sidney B. Rigg, Warren M. Farnworth, William M. Hiatt
  • Patent number: 7567091
    Abstract: A circuit for isolating a short-circuited integrated circuit (IC) formed on the surface of a semiconductor wafer from other ICs formed on the wafer that are interconnected with the short-circuited IC includes control circuitry within the short-circuited IC for sensing the short circuit. The control circuitry may sense the short circuit in a variety of ways, including sensing excessive current drawn by the short-circuited IC, and sensing an abnormally low or high voltage within the short-circuited IC. Switching circuitry also within the short-circuited IC selectively isolates the short-circuited IC from the other ICs on the wafer in response to the control circuitry sensing the short circuit. As a result, if the wafer is under probe test, for example, testing can continue uninterrupted on the other ICs while the short-circuited IC is isolated.
    Type: Grant
    Filed: January 21, 2008
    Date of Patent: July 28, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, William K. Waller, Leland R. Nevill, Raymond J. Beffa, Eugene H. Cloud
  • Patent number: 7561938
    Abstract: An inventive method in an integrated circuit (IC) manufacturing process for using data regarding repair procedures conducted on ICs at probe to determine whether any further repairs will be conducted later in the manufacturing process includes storing the data in association with a fuse ID of each of the ICs. The ID codes of the ICs are automatically read, for example, at an opens/shorts test during the manufacturing process. The data stored in association with the ID codes of the ICs is then accessed, and additional repair procedures the ICs may undergo are selected in accordance with the accessed data. Thus, for example, the accessed data may indicate that an IC is unrepairable, so the IC can proceed directly to a scrap bin without having to be queried to determine whether it is repairable, as is necessary in traditional IC manufacturing processes.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: July 14, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, Warren M. Farnworth, Derek J. Gochnour, David R. Hembree, Michael E. Hess, John O. Jacobson, James M. Wark, Alan G. Wood
  • Patent number: 7554200
    Abstract: Semiconductor devices with porous insulative materials are disclosed. The porous insulative materials may include a consolidated material with voids dispersed therethrough. The voids may be defined by shells of microcapsules. The voids impart the dielectric materials with reduced dielectric constants and, thus, increased electrical insulation properties.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: June 30, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Tongbi Jiang
  • Publication number: 20090155949
    Abstract: Microelectronic imager assemblies comprising a workpiece including a substrate and a plurality of imaging dies on and/or in the substrate. The substrate includes a front side and a back side, and the imaging dies comprise imaging sensors at the front side of the substrate and external contacts operatively coupled to the image sensors. The microelectronic imager assembly further comprises optics supports superimposed relative to the imaging dies. The optics supports can be directly on the substrate or on a cover over the substrate. Individual optics supports can have (a) an opening aligned with one of the image sensors, and (b) a bearing element at a reference distance from the image sensor. The microelectronic imager assembly can further include optical devices mounted or otherwise carried by the optics supports.
    Type: Application
    Filed: February 20, 2009
    Publication date: June 18, 2009
    Inventors: Warren M. Farnworth, Sidney B. Rigg, William Mark Hiatt, Alan G. Wood, Peter A. Benson, James M. Wark, David R. Hembree, Kyle K. Kirby, Charles M. Watkins, Salman Akram
  • Patent number: 7547978
    Abstract: Polymerized materials for forming the underfill and encapsulation structures for semiconductor package are disclosed. A filler constituent, such as boron nitride, silicates, elemental metals, or alloys, may be added to a liquid photopolymer resin to tailor the physical properties thereof upon curing. The filler constituents may be employed to alter the coefficient of thermal expansion, thermal conductivity, or electrical conductivity of the polymerized material. A number of different embodiments are disclosed that employ the above materials in selected regions of the underfill and encapsulation structures of the semiconductor package. The polymerized materials may also be used to form support structures and covers for optically interactive semiconductor devices. Methods for forming the above structures using stereolithography are also disclosed.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: June 16, 2009
    Assignee: Micron Technology, Inc.
    Inventors: David R. Hembree, Warren M. Farnworth
  • Patent number: 7547850
    Abstract: Photolithography patterned spring contacts are disclosed. The spring contacts may be fabricated using thin film processing techniques. A substrate, such as a silicon wafer or a carrier substrate is provided. At least one layer of a metal or alloy film may be deposited on the substrate or on at least one intervening release layer and patterned to form metal traces. A stressable material, exhibiting an at least partially tensile stress state, may be deposited on the metal traces in a localized region. A portion of the substrate or a portion of the intervening release layer underneath the metal traces may be removed by etching, causing the metal traces to curl upward resulting in the spring contacts. The spring contacts may be used as compliant electrical contacts for electrical devices, such as integrated circuits or carrier substrates. The compliant electrical contacts may also be used for probe cards to test other electrical devices.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: June 16, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Warren M. Farnworth
  • Publication number: 20090139988
    Abstract: A microwave device is disclosed which includes a cavity wherein varied frequency microwaves are generated, a movable tuning member that is adapted to extend into the cavity and a force generator that is mechanically coupled to the movable tuning member, the force generator, when actuated, being adapted to move the movable tuning member within an opening in the cavity. A method is also disclosed which includes varying a volume of a cavity in a microwave generator and generating varied frequency microwaves in the cavity.
    Type: Application
    Filed: December 3, 2007
    Publication date: June 4, 2009
    Inventor: Warren M. Farnworth
  • Publication number: 20090140434
    Abstract: A flexible column interconnect for a microelectronic substrate includes a plurality of conductive columns extending from a bond pad or other conductive terminal in substantially mutually parallel arrangement, providing redundant current paths between the bond pad and a common cap in the form of a contact pad to which they are all joined. The flexibility of the interconnect may be varied by controlling the column dimensions, height, aspect ratio, number of columns, column material and by applying a supporting layer of dielectric material to a controlled depth about the base of the columns. A large number of interconnects may be formed on a wafer, partial wafer, single die, interposer, circuit board, or other substrate.
    Type: Application
    Filed: December 30, 2008
    Publication date: June 4, 2009
    Applicant: Micron Technology, Inc.
    Inventor: Warren M. Farnworth
  • Patent number: 7538413
    Abstract: A semiconductor component includes a semiconductor substrate having a substrate contact on a circuit side thereof in electrical communication with an integrated circuit, and a through interconnect in physical and electrical contact with the substrate contact configured to provide a signal path to a back side of the semiconductor substrate. The through interconnect includes an opening in the semiconductor substrate aligned with the substrate contact, and a projection on an interposer substrate (or alternately on a second semiconductor substrate) configured for mating physical engagement with the opening in the semiconductor substrate. The projection can also include a conductive via configured for electrical contact with a backside of the substrate contact and with a terminal contact for the component.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: May 26, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Alan G. Wood, Warren M. Farnworth, David R. Hembree
  • Patent number: 7539048
    Abstract: A circuit and method for writing to a variable resistance memory cell. The circuit includes a variable resistance memory cell, a switchable current blocking device and a charge storing element. As the switchable current blocking device blocks current flow through the variable resistance memory cell, the charge storing element charges. When the switchable current blocking device is not blocking current, the charge storing element discharges through the variable resistance memory cell, generating a write current sufficient to write high resistance variable resistance memory cells.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: May 26, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Warren M. Farnworth
  • Patent number: 7531453
    Abstract: Microelectronic devices, methods for packaging microelectronic devices, and methods for forming interconnects in microelectronic devices are disclosed herein. In one embodiment, a method comprises providing a microelectronic substrate having a front side and a backside. The substrate has a microelectronic die including an integrated circuit and a terminal operatively coupled to the integrated circuit. The method also includes forming a passage at least partially through the substrate and having an opening at the front side and/or backside of the substrate. The method further includes sealing the opening with a conductive cap that closes one end of the passage while another end of the passage remains open. The method then includes filling the passage with a conductive material.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: May 12, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Salman Akram, David R. Hembree, Sidney B. Rigg, Warren M. Farnworth, William M. Hiatt
  • Patent number: 7528491
    Abstract: Methods for forming vias are disclosed. The methods include providing a substrate having a first surface and an opposing, second surface. A first opening, a second opening, and a third opening are formed in a substrate such that the first opening, the second opening, and the third opening are in communication with each other. A portion of the first opening, the second opening, and the third opening are filled with a conductive material. Semiconductor devices, including the vias of the present invention, are also disclosed. Semiconductor components and assemblies resulting therefrom, and an electronic system, including the vias of the present invention, are further disclosed.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: May 5, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Warren M. Farnworth
  • Patent number: 7521296
    Abstract: Microlenses for directing radiation toward a sensor of an imaging device include a plurality of mutually adhered layers of cured optically transmissive material. Systems include at least one microprocessor and a substrate including an array of microlenses formed thereon in electrical communication with the at least one microprocessor. At least one microlens in the array includes a plurality of mutually adhered layers of cured optically transmissive material.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: April 21, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Alan G. Wood, Warren M. Farnworth, Charles M. Watkins, Peter A. Benson
  • Patent number: 7519881
    Abstract: An IC module, such as a Multi-Chip Module (MCM), includes multiple IC dice, each having a test mode enable bond pad, such as an output enable pad. A fuse incorporated into the MCM's substrate connects each die's test mode enable bond pad to one of the MCM's no-connection (N/C) pins, and a resistor incorporated into the substrate connects the test mode enable bond pads to one of the MCM's ground pins. By applying a supply voltage to the test mode enable bond pads through the N/C pin, a test mode is initiated in the dice. Once testing is complete, the fuse may be blown, and a ground voltage applied to the test mode enable bond pads through the ground pins so the resistor disables the test mode in the dice and initiates an operational mode. As a result, dice packaged in IC modules may be tested after packaging.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: April 14, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, James M. Wark, Eric S. Nelson, Kevin G. Duesman