Patents by Inventor Warren M. Farnworth

Warren M. Farnworth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100123115
    Abstract: An interconnect for mounting an electronic device to a substrate includes a base layer between the electronic device and the substrate in electrical communication with integrated circuits on the electronic device, a phase change layer on the base layer made of a material which is liquid at normal operating temperatures of the electronic device. and a retaining layer surrounding the phase change layer, and configured to retain the phase change layer in liquid form on the base layer.
    Type: Application
    Filed: November 10, 2009
    Publication date: May 20, 2010
    Inventor: Warren M. Farnworth
  • Patent number: 7719120
    Abstract: An integrated circuit connection is describe that includes a first, securing member and a second, connection member. The first member, in an embodiment, is a spike that has a portion of its body fixed in a layer of an integrated circuit structure and extends outwardly from the integrated circuit structure. The second material is adapted to form a mechanical connection to a further electrical device. The second material (e.g., solder), is held by the first member to the integrated circuit structure. The first member increases the strength of the connection and assists in controlling the collapse of second member to form the mechanical connection to another circuit. The connection is formed by coating the integrated circuit structure with a patterned resist and etching the layer beneath the resist. A first member material (e.g., metal) is deposited. The resist is removed. The collapsible material is fixed to the first member.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: May 18, 2010
    Assignee: Micron Technology, Inc.
    Inventors: William M. Hiatt, Warren M. Farnworth
  • Patent number: 7713841
    Abstract: A support structure for use with a semiconductor substrate in thinning, or backgrinding, thereof, as well as during post-thinning processing of the semiconductor substrate includes a portion which extends substantially along and around an outer periphery of the semiconductor substrate to impart the thinned semiconductor substrate with rigidity. The support structure may be configured as a ring or as a member which substantially covers an active surface of the semiconductor substrate and forms a protective structure over each semiconductor device carried by the active surface. Assemblies that include the support structure and a semiconductor substrate are also within the scope of the present invention, as are methods for forming the support structures and thinning and post-thinning processes that include use of the support structures.
    Type: Grant
    Filed: September 19, 2003
    Date of Patent: May 11, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Alan G. Wood, Warren M. Farnworth, David R. Hembree, Sidney B. Rigg, William M. Hiatt, Peter Benson, Kyle K. Kirby, Salman Akram
  • Patent number: 7709776
    Abstract: Microelectronic imager assemblies comprising a workpiece including a substrate and a plurality of imaging dies on and/or in the substrate. The substrate includes a front side and a back side, and the imaging dies comprise imaging sensors at the front side of the substrate and external contacts operatively coupled to the image sensors. The microelectronic imager assembly further comprises optics supports superimposed relative to the imaging dies. The optics supports can be directly on the substrate or on a cover over the substrate. Individual optics supports can have (a) an opening aligned with one of the image sensors, and (b) a bearing element at a reference distance from the image sensor. The microelectronic imager assembly can further include optical devices mounted or otherwise carried by the optics supports.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: May 4, 2010
    Assignee: Aptina Imaging Corporation
    Inventors: Warren M. Farnworth, Sidney B. Rigg, William Mark Hiatt, Alan G. Wood, Peter A. Benson, James M. Wark, David R. Hembree, Kyle K. Kirby, Charles M. Watkins, Salman Akram
  • Patent number: 7701039
    Abstract: At least one high aspect ratio via is formed in the backside of a semiconductor substrate. The at least one via is closed at one end by a conductive element forming a conductive structure of the semiconductor substrate. The backside of the semiconductor substrate is exposed to an electroplating solution containing a conductive material in solution with the active surface semiconductor substrate isolated therefrom. An electric potential is applied across the conductive element through the electroplating solution and a conductive contact pad in direct or indirect electrical communication with the conductive element at the closed end of the at least one via (or forming such conductive element) to cause conductive material to electrochemically deposit from the electroplating solution and fill the at least one via. Semiconductor devices and in-process semiconductor devices are also disclosed.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: April 20, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Warren M. Farnworth
  • Publication number: 20100090265
    Abstract: A nanodot nonvolatile memory element comprises a substrate having a source and a drain region formed therein, and an insulating layer formed on the substrate. The insulating layer contains a nanocrystalline floating gate of approximately three to six nanometers in diameter formed at a distance of approximately two to five nanometers from the substrate, and a carbon nanotube control gate having a diameter of approximately six nanometers or less is formed at a distance of approximately 10-15 nanometers from the substrate.
    Type: Application
    Filed: October 19, 2006
    Publication date: April 15, 2010
    Inventors: Arup Bhattacharyya, Warren M. Farnworth, Paul A. Farrar
  • Patent number: 7683458
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: March 23, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, Charles M. Watkins, William M. Hiatt, David R. Hembree, James M. Wark, Warren M. Farnworth, Mark E. Tuttle, Sidney B. Rigg, Steven D. Oliver, Kyle K. Kirby, Alan G. Wood, Lu Velicky
  • Publication number: 20100059897
    Abstract: Interconnect structures for stacked dies, including penetrating structures for through-silicon vias, and associated systems and methods are disclosed. A system in accordance with a particular embodiment includes a first semiconductor substrate having a first substrate material, and a penetrating structure carried by the first semiconductor substrate. The system further includes a second semiconductor substrate having a second substrate material with a preformed recess. The penetrating structure of the first semiconductor substrate is received in the recess of the second semiconductor substrate and is mechanically engaged with the recess and secured to the second semiconductor substrate.
    Type: Application
    Filed: September 11, 2008
    Publication date: March 11, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Owen R. Fay, Warren M. Farnworth, David R. Hembree
  • Patent number: 7674652
    Abstract: A technique for making an integrated circuit package. Specifically, a stacked memory device is provided with minimal interconnects. Memory die are stacked on top of each other and electrically coupled to a substrate. Thru vias are provided in the substrate and/or memory die to facilitate the electrical connects without necessitating a complex interconnect technology between each of the interfaces. Wire bonds are used to complete the circuit package.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: March 9, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Jerry M. Brooks
  • Publication number: 20100041180
    Abstract: The invention includes semiconductor assemblies having two or more dies. An exemplary assembly has circuitry associated with a first die front side electrically connected to circuitry associated with a second die front side. The front side of the second die is adjacent a back side of the first die, and a through wafer interconnect extends through the first die. The through wafer interconnect includes a conductive liner within a via extending through the first die. The conductive liner narrows the via, and the narrowed via is filled with insulative material. The invention also includes methods of forming semiconductor assemblies having two or more dies; and includes electronic systems containing assemblies with two or more dies.
    Type: Application
    Filed: October 19, 2009
    Publication date: February 18, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Steven Oliver, Warren M. Farnworth
  • Patent number: 7663096
    Abstract: Microelectronic imaging devices and associated methods for attaching transmissive elements are disclosed. A manufacturing method in accordance with one embodiment of the invention includes providing an imager workpiece having multiple image sensor dies configured to detect energy over a target frequency. The image sensor dies can include an image sensor and a corresponding lens device positioned proximate to the image sensor. The method can further include positioning standoffs adjacent to the lens devices while the image sensor dies are connected to each other via the imager workpiece. At least one transmissive element can be attached to the workpiece at least proximate to the standoffs so the lens devices are positioned between the corresponding image sensors and the at least one transmissive element. Accordingly, the at least one transmissive element can protect the image sensors while the image sensor dies are still connected.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: February 16, 2010
    Assignee: Aptina Imaging Corporation
    Inventors: Warren M. Farnworth, Alan G. Wood
  • Patent number: 7649145
    Abstract: Photolithography patterned spring contacts are disclosed. The spring contacts may be fabricated using thin film processing techniques. A substrate, such as a silicon wafer or a carrier substrate is provided. At least one layer of a metal or alloy film may be deposited on the substrate or on at least one intervening release layer and patterned to form metal traces. A stressable material, exhibiting an at least partially tensile stress state, may be deposited on the metal traces in a localized region. A portion of the substrate or a portion of the intervening release layer underneath the metal traces may be removed by etching, causing the metal traces to curl upward resulting in the spring contacts. The spring contacts may be used as compliant electrical contacts for electrical devices, such as integrated circuits or carrier substrates. The compliant electrical contacts may also be used for probe cards to test other electrical devices.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: January 19, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Warren M. Farnworth
  • Patent number: 7645635
    Abstract: A semiconductor package such as an image sensor package, and methods for fabrication. A frame structure includes an array of frames, each having an aperture therethrough, into which an image sensor die in combination with a cover glass, filter, lens or other components may be installed in precise mutual alignment. Singulated image sensor dice and other components may be picked and placed into each frame of the frame structure. Alternatively, the frame structure may be configured to be aligned with and joined to a wafer bearing a plurality of image sensor dice, wherein optional, downwardly protruding skirts along peripheries of the frames may be received into kerfs cut along streets between die locations on the wafer, followed by installation of other package components. In either instance, the frame structure in combination with singulated image sensor dice or a joined wafer is singulated into individual image sensor packages. Various external connection approaches may be used for the packages.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: January 12, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Alan G. Wood, Kyle K. Kirby, Warren M. Farnworth, Salman Akram
  • Patent number: 7632713
    Abstract: Microelectronic imaging devices and methods of packaging microelectronic imaging devices are disclosed herein. In one embodiment, the microelectronic imaging devices include an interposer substrate and a plurality of imager units coupled to the interposer substrate. The interposer substrate includes a plurality of openings and a plurality of contact arrays proximate to corresponding openings. The individual imager units include a microelectronic die with an image sensor and a plurality of bond-pads electrically coupled to the image sensor. The image sensors are aligned with corresponding openings on the interposer substrate, and the bond-pads are electrically coupled to corresponding contacts on the interposer substrate.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: December 15, 2009
    Assignee: Aptina Imaging Corporation
    Inventors: Warren M. Farnworth, William Mark Hiatt
  • Patent number: 7626269
    Abstract: The invention includes semiconductor assemblies having two or more dies. An exemplary assembly has circuitry associated with a first die front side electrically connected to circuitry associated with a second die front side. The front side of the second die is adjacent a back side of the first die, and a through wafer interconnect extends through the first die. The through wafer interconnect includes a conductive liner within a via extending through the first die. The conductive liner narrows the via, and the narrowed via is filled with insulative material. The invention also includes methods of forming semiconductor assemblies having two or more dies; and includes electronic systems containing assemblies with two or more dies.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: December 1, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Steve Oliver, Warren M. Farnworth
  • Publication number: 20090273360
    Abstract: A circuit for isolating a short-circuited integrated circuit (IC) formed on the surface of a semiconductor wafer from other ICs formed on the wafer that are interconnected with the short-circuited IC includes control circuitry within the short-circuited IC for sensing the short circuit. The control circuitry may sense the short circuit in a variety of ways, including sensing excessive current drawn by the short-circuited IC, and sensing an abnormally low or high voltage within the short-circuited IC. Switching circuitry also within the short-circuited IC selectively isolates the short-circuited IC from the other ICs on the wafer in response to the control circuitry sensing the short circuit. As a result, if the wafer is under probe test, for example, testing can continue uninterrupted on the other ICs while the short-circuited IC is isolated.
    Type: Application
    Filed: July 16, 2009
    Publication date: November 5, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Warren M. Farnworth, William K. Waller, Leland R. Nevill, Raymond J. Beffa, Eugene H. Cloud
  • Patent number: 7603772
    Abstract: Substrate precursor structures include a substrate blank having at least one aperture extending substantially through the substrate blank. At least a portion of at least one conductive layer covers a surface of the at least one aperture of the substrate blank. A mask pattern covers a portion of the at least one conductive layer and exposes another portion of the at least one conductive layer to define at least one conductive element, at least a portion of which extends over the surface of the at least one aperture.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: October 20, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Steven M. McDonald, Nishant Sinha, William M. Hiatt
  • Publication number: 20090256262
    Abstract: Semiconductor devices with porous insulative materials are disclosed. The porous insulative materials may include a consolidated material with voids dispersed therethrough. The voids may be defined by shells of microcapsules. The voids impart the dielectric materials with reduced dielectric constants and, thus, increased electrical insulation properties.
    Type: Application
    Filed: June 22, 2009
    Publication date: October 15, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Warren M. Farnworth, Tongbi Jiang
  • Patent number: 7600314
    Abstract: A technique is provided for installing circuit components, such as memory devices, in a support, such as a socket. The device to be installed is supported in a holder or shell. The holder is positioned over a support region in the receiving socket. A manual actuator is pressed into the holder to eject the device from the holder and to install the device in the support. The holder may be configured to hold a single device, or multiple devices aligned in slots defined by partitions. A multi-device tray may be provided for indexing devices toward an ejection slot, through which the devices are installed by manual actuation of an ejecting actuator. The technique provides protection for the device prior to and during installation, and facilitates manual installation of such devices without requiring direct hand contact with the device either prior to or during installation.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: October 13, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Larry Kinsman, Mike Brooks, Warren M. Farnworth, Walter Moden, Terry Lee
  • Patent number: 7598167
    Abstract: Methods for forming through vias in a semiconductor substrate and resulting structures are disclosed. In one embodiment, a through via may be formed by forming a partial via from the active surface through a conductive element thereon and a portion of the semiconductor substrate underlying the conductive element. The through via may then be completed by laser ablation or drilling from the back surface. In another embodiment, a partial via may be formed by laser ablation or drilling from the back surface of a semiconductor substrate to a predetermined distance therein. The through via may be completed from the active surface by forming a partial via extending through the conductive element and the underlying semiconductor substrate to intersect the laser-drilled partial via. In another embodiment, a partial via may first be formed by ablation or drilling from the back surface of the semiconductor substrate followed by dry etching to complete the through via and expose the underside of the conductive element.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: October 6, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Charles M. Watkins, Kyle K. Kirby, Alan G. Wood, Salman Akram, Warren M. Farnworth