Patents by Inventor Wayne McMillan

Wayne McMillan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11187836
    Abstract: Embodiments herein describe a sub-micron 3D diffractive optics element and a method for forming the sub-micron 3D diffractive optics element. In a first embodiment, a method is provided for forming a sub-micron 3D diffractive optics element on a substrate without planarization. The method includes depositing a material stack to be patterned on a substrate, depositing and patterning a thick mask material on a portion of the material stack, etching the material stack down one level, trimming a side portion of the thick mask material, etching the material stack down one more level, repeating trim and etch steps above ‘n’ times, and stripping the thick mask material from the material stack.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: November 30, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Michael Yu-tak Young, Ludovic Godet, Robert Jan Visser, Naamah Argaman, Christopher Dennis Bencher, Wayne McMillan
  • Patent number: 10955606
    Abstract: Embodiments described herein relate to methods of fabricating waveguide structures with gratings having front angles less than about 45° and back angles less than about 45°. The methods include imprinting stamps into nanoimprint resists disposed on substrates. The nanoimprint resists are subjected to a cure process. The stamps are released from the nanoimprint resist at a release angle ? using a release method. The nanoimprint resists are subjected to an anneal process to form a waveguide structure comprising a plurality of gratings with a front angle ? and a back angle ? relative to a second plane of the surface of the substrate less than about 45°.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: March 23, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael Yu-tak Young, Ludovic Godet, Robert Jan Visser, Wayne McMillan
  • Publication number: 20200393599
    Abstract: An imaging system and a method of manufacturing a metalens array is provided. The imaging system includes a metalens array, and light scattered from an object is split by the metalens array, such that an image is formed in front of an observer. The metalens array is at least partially transparent to visible light, so that the observer can also see the environment. The method of manufacturing the metalens array includes bonding together a plurality of substrates, and dicing the plurality of substrates into metalens arrays. The metalens arrays can be used in the imaging system.
    Type: Application
    Filed: August 9, 2019
    Publication date: December 17, 2020
    Inventors: Jinxin FU, Tapashree ROY, Ludovic GODET, Wayne MCMILLAN, Robert J. VISSER
  • Publication number: 20200325576
    Abstract: Embodiments of the present disclosure relate to forming multi-depth films for the fabrication of optical devices. One embodiment includes disposing a base layer of a device material on a surface of a substrate. One or more mandrels of the device material are disposed on the base layer. The disposing the one or more mandrels includes positioning a mask over of the base layer. The device material is deposited with the mask positioned over the base layer to form an optical device having the base layer with a base layer depth and the one or more mandrels having a first mandrel depth and a second mandrel depth.
    Type: Application
    Filed: April 8, 2020
    Publication date: October 15, 2020
    Inventors: Karl J. ARMSTRONG, Ludovic GODET, Brian Alexander COHEN, Wayne MCMILLAN, James D. STRASSNER, Benjamin RIORDON
  • Publication number: 20200326621
    Abstract: Methods for patterning of multi-depth layers for the fabrication of optical devices are provided. In one embodiment, a method is provided that includes disposing a resist layer over a device layer disposed over a top surface of a substrate, the device layer having a first portion and a second portion, patterning the resist layer to form a first resist layer pattern having a plurality of first openings and a second resist layer pattern having a plurality of second openings, and etching exposed portions of the device layer defined by the plurality of first openings and the plurality of second openings, wherein the plurality of first openings are configured to form at least a portion of a plurality of first structures within the optical device, and the plurality of second openings are configured to form at least a portion of a plurality of second structures within the optical device.
    Type: Application
    Filed: April 9, 2020
    Publication date: October 15, 2020
    Inventors: Ludovic GODET, Chien-An CHEN, Brian Alexander COHEN, Wayne MCMILLAN, Ian Matthew MCMACKIN
  • Publication number: 20200301062
    Abstract: Embodiments described herein relate to methods for fabricating waveguide structures utilizing substrates. The waveguide structures are formed having input coupling regions, waveguide regions, and output coupling regions formed from substrates. The regions are formed by imprinting stamps into resists disposed on hard masks formed on surfaces of the substrates to form positive waveguide patterns. Portions of the positive waveguide patterns and the hard masks formed under the portions are removed. The substrates are masked and etched to form gratings in the input coupling regions and the output coupling regions. Residual portions of the positive waveguide patterns and the hard masks disposed under the residual portions are removed to form waveguide structures having input coupling regions, waveguide regions, and output coupling regions formed from substrates.
    Type: Application
    Filed: November 13, 2018
    Publication date: September 24, 2020
    Inventors: Michael Yu-tak YOUNG, Wayne MCMILLAN, Rutger MEYER TIMMERMAN THIJSSEN, Robert Jan VISSER
  • Publication number: 20200284953
    Abstract: Embodiments of the present disclosure generally relate to a method for forming an optical component, for example, for a virtual reality or augmented reality display device. In one embodiment, the method includes forming a first layer on a substrate, and the first layer has a first refractive index. The method further includes pressing a stamp having a pattern onto the first layer, and the pattern of the stamp is transferred to the first layer to form a patterned first layer. The method further includes forming a second layer on the patterned first layer by spin coating, and the second layer has a second refractive index greater than the first refractive index. The second layer having the high refractive index is formed by spin coating, leading to improved nanoparticle uniformity in the second layer.
    Type: Application
    Filed: May 27, 2020
    Publication date: September 10, 2020
    Inventors: Jinxin Fu, Ludovic Godet, Wayne McMillan
  • Publication number: 20200286778
    Abstract: Systems and methods herein are related to the formation of optical devices including stacked optical element layers using silicon wafers, glass, or devices as substrates. The optical elements discussed herein can be fabricated on temporary or permanent substrates. In some examples, the optical devices are fabricated to include transparent substrates or devices including charge-coupled devices (CCD), or complementary metal-oxide semiconductor (CMOS) image sensors, light-emitting diodes (LED), a micro-LED (uLED) display, organic light-emitting diode (OLED) or vertical-cavity surface-emitting laser (VCSELs). The optical elements can have interlayers formed in between optical element layers, where the interlayers can range in thickness from 1 nm to 3 mm.
    Type: Application
    Filed: May 22, 2020
    Publication date: September 10, 2020
    Inventors: Ludovic GODET, Wayne MCMILLAN, Rutger MEYER TIMMERMAN THIJSSEN, Naamah ARGAMAN, Tapashree ROY, Sage Toko Garrett DOSHAY
  • Patent number: 10705268
    Abstract: Embodiments of the present disclosure generally relate to a method for forming an optical component, for example, for a virtual reality or augmented reality display device. In one embodiment, the method includes forming a first layer on a substrate, and the first layer has a first refractive index. The method further includes pressing a stamp having a pattern onto the first layer, and the pattern of the stamp is transferred to the first layer to form a patterned first layer. The method further includes forming a second layer on the patterned first layer by spin coating, and the second layer has a second refractive index greater than the first refractive index. The second layer having the high refractive index is formed by spin coating, leading to improved nanoparticle uniformity in the second layer.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: July 7, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Jinxin Fu, Ludovic Godet, Wayne McMillan
  • Patent number: 10707118
    Abstract: Systems and methods herein are related to the formation of optical devices including stacked optical element layers using silicon wafers, glass, or devices as substrates. The optical elements discussed herein can be fabricated on temporary or permanent substrates. In some examples, the optical devices are fabricated to include transparent substrates or devices including charge-coupled devices (CCD), or complementary metal-oxide semiconductor (CMOS) image sensors, light-emitting diodes (LED), a micro-LED (uLED) display, organic light-emitting diode (OLED) or vertical-cavity surface-emitting laser (VCSELs). The optical elements can have interlayers formed in between optical element layers, where the interlayers can range in thickness from 1 nm to 3 mm.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: July 7, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ludovic Godet, Wayne McMillan, Rutger Meyer Timmerman Thijssen, Naamah Argaman, Tapashree Roy, Sage Doshay
  • Publication number: 20200195172
    Abstract: Embodiments of the present disclosure generally relate to substrate support assemblies for retaining a surface of a substrate having one or more devices disposed on the surface without contacting the one or more devices and deforming the substrate, and a system having the same. In one embodiment, the substrate support assembly includes an edge ring coupled to a body of the substrate support assembly. A controller is coupled to actuated mechanisms of a plurality of pixels coupled to the body of the substrate support assembly such that portions of pixels corresponding to a portion of the surface of a substrate to be retained are positioned to support the portion without contacting one or more devices disposed on the surface of the substrate to be retained on the support surface.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 18, 2020
    Inventors: Wayne MCMILLAN, Visweswaren SIVARAMAKRISHNAN, Joseph C. OLSON, Ludovic GODET, Rutger MEYER TIMMERMAN THIJSSEN, Naamah ARGAMAN
  • Publication number: 20200194319
    Abstract: Embodiments described herein relate to semiconductor processing. More specifically, embodiments described herein relate to processing of transparent substrates. A film is deposited on a backside of the transparent substrate. A thickness of the film is determined such that the film reflects particular wavelengths of light and substantially prevents bowing of the substrate. The film provides constructive interference to the particular wavelengths of light.
    Type: Application
    Filed: October 25, 2019
    Publication date: June 18, 2020
    Inventors: Sage Toko Garrett DOSHAY, Rutger MEYER TIMMERMAN THIJSSEN, Ludovic GODET, Mingwei ZHU, Naamah ARGAMAN, Wayne MCMILLAN, Siddarth KRISHNAN
  • Publication number: 20200166783
    Abstract: Embodiments of metasurfaces having nanostructures with desired geometric profiles and configurations are provided in the present disclosure. In one embodiment, a metasurface includes a nanostructure formed on a substrate, wherein the nanostructure is cuboidal or cylindrical in shape. In another embodiment, a metasurface includes a plurality of nanostructures on a substrate, wherein each of the nanostructures has a gap greater than 35 nm spaced apart from each other. In yet another embodiment, a metasurface includes a plurality of nanostructures on a substrate, wherein the nanostructures are fabricated from at least one of TiO2, silicon nitride, or amorphous silicon, or GaN or aluminum zinc oxide or any material with refractive index greater than 1.8, and absorption coefficient smaller than 0.001, the substrate is transparent with absorption coefficient smaller than 0.001.
    Type: Application
    Filed: October 14, 2019
    Publication date: May 28, 2020
    Inventors: Tapashree ROY, Wayne MCMILLAN, Rutger MEYER TIMMERMAN THIJSSEN
  • Patent number: 10636825
    Abstract: Embodiments described herein generally relate to an apparatus for capturing an image and a photoactive device for that apparatus. In one embodiment, the apparatus for capturing an image includes a lens and a photoactive device. The photoactive device is positioned behind the lens. The photoactive device includes a substrate, one or more photodiodes, and a color filter array. The one or more photodiodes are formed in the substrate. The color filter array is positioned over the substrate. The color filter array has one or more color filters. Each color filter has a radiation receiving surface that is shaped to re-direct radiation to a respective photodiode.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: April 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Joseph R. Johnson, Robert Jan Visser, Wayne McMillan, Rutger Meyer Timmerman Thijssen
  • Patent number: 10564332
    Abstract: Embodiments described herein relate to augmented waveguide regions. The augmented waveguide regions generally include pluralities of gratings having duty cycles and refractive indices. In certain embodiments, the duty cycles are different, the refractive indices are different, or both the duty cycles and the refractive indices are different. Also described herein are methods for forming the augmented waveguide regions.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: February 18, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rutger Meyer Timmerman Thijssen, Wayne McMillan
  • Publication number: 20200003937
    Abstract: Embodiments of the present disclosure generally relate to a method for forming an optical component, for example, for a virtual reality or augmented reality display device. In one embodiment, the method includes forming a first layer having a pattern on a substrate, and the first layer has a first refractive index. The method further includes forming a second layer on the first layer by a flowable chemical vapor deposition (FCVD) process, and the second layer has a second refractive index less than the first refractive index.
    Type: Application
    Filed: September 4, 2018
    Publication date: January 2, 2020
    Inventors: Jinxin FU, Ludovic GODET, Wayne MCMILLAN
  • Publication number: 20200004029
    Abstract: The systems and methods discussed herein are for the fabrication of diffraction gratings, such as those gratings used in waveguide combiners. The waveguide combiners discussed herein are fabricated using nanoimprint lithography (NIL) of high-index and low-index materials in combination with and directional etching high-index and low-index materials. The waveguide combiners can be additionally or alternatively formed by the directional etching of transparent substrates. The waveguide combiners that include diffraction gratings discussed herein can be formed directly on permanent transparent substrates. In other examples, the diffraction gratings can be formed on temporary substrates and transferred to a permanent, transparent substrate.
    Type: Application
    Filed: June 27, 2019
    Publication date: January 2, 2020
    Inventors: Ludovic GODET, Wayne MCMILLAN, Rutger MEYER TIMMERMAN THIJSSEN
  • Publication number: 20200003936
    Abstract: Embodiments of the present disclosure generally relate to a method for forming an optical component, for example, for a virtual reality or augmented reality display device. In one embodiment, the method includes forming a first layer on a substrate, and the first layer has a first refractive index. The method further includes pressing a stamp having a pattern onto the first layer, and the pattern of the stamp is transferred to the first layer to form a patterned first layer. The method further includes forming a second layer on the patterned first layer by spin coating, and the second layer has a second refractive index greater than the first refractive index. The second layer having the high refractive index is formed by spin coating, leading to improved nanoparticle uniformity in the second layer.
    Type: Application
    Filed: September 4, 2018
    Publication date: January 2, 2020
    Inventors: Jinxin FU, Ludovic GODET, Wayne MCMILLAN
  • Publication number: 20190369321
    Abstract: Embodiments described herein relate to methods of fabricating waveguide structures with gratings having front angles less than about 45° and back angles less than about 45°. The methods include imprinting stamps into nanoimprint resists disposed on substrates. The nanoimprint resists are subjected to a cure process. The stamps are released from the nanoimprint resist at a release angle ? using a release method. The nanoimprint resists are subjected to an anneal process to form a waveguide structure comprising a plurality of gratings with a front angle ? and a back angle ? relative to a second plane of the surface of the substrate less than about 45°.
    Type: Application
    Filed: November 14, 2018
    Publication date: December 5, 2019
    Inventors: Michael Yu-tak YOUNG, Ludovic GODET, Robert Jan VISSER, Wayne MCMILLAN
  • Publication number: 20190318957
    Abstract: Systems and methods herein are related to the formation of optical devices including stacked optical element layers using silicon wafers, glass, or devices as substrates. The optical elements discussed herein can be fabricated on temporary or permanent substrates. In some examples, the optical devices are fabricated to include transparent substrates or devices including charge-coupled devices (CCD), or complementary metal-oxide semiconductor (CMOS) image sensors, light-emitting diodes (LED), a micro-LED (uLED) display, organic light-emitting diode (OLED) or vertical-cavity surface-emitting laser (VCSELs). The optical elements can have interlayers formed in between optical element layers, where the interlayers can range in thickness from 1 nm to 3 mm.
    Type: Application
    Filed: February 22, 2019
    Publication date: October 17, 2019
    Inventors: Ludovic GODET, Wayne MCMILLAN, Rutger MEYER TIMMERMAN THIJSSEN, Naamah ARGAMAN, Tapashree ROY, Sage DOSHAY