Patents by Inventor Wei-Ding Wu

Wei-Ding Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11861928
    Abstract: Optical sensors and their making methods are described herein. In some embodiments, a described sensing apparatus includes: an image sensor; a collimator above the image sensor, wherein the collimator includes an array of apertures; and an optical filtering layer above the collimator, wherein the optical filtering layer is configured to filter a portion of light to be transmitted into the array of apertures.
    Type: Grant
    Filed: November 23, 2022
    Date of Patent: January 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: You-Cheng Jhang, Han-Zong Pan, Wei-Ding Wu, Jiu-Chun Weng, Hsin-Yu Chen, Cheng-San Chou, Chin-Min Lin
  • Publication number: 20230400699
    Abstract: Disclosed is a cost-effective method to fabricate a multifunctional collimator structure for contact image sensors to filter ambient infrared light to reduce noises. In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; a plurality of via holes; and a conductive layer, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction, and wherein the conductive layer is formed over at least one of the following: the first surface of the first dielectric layer and a portion of sidewalls of each of the plurality of via holes, and wherein the conductive layer is configured so as to allow the optical collimator to filter light in a range of wavelengths.
    Type: Application
    Filed: August 8, 2023
    Publication date: December 14, 2023
    Inventors: Hsin-Yu CHEN, Yen-Chiang LIU, June-Jie CHIOU, Jia-Syuan LI, You-Cheng JHANG, Shin-Hua CHEN, LAVANYA SANAGAVARAPU, Han-Zong PAN, Chun-Peng LI, Chia-Chun HUNG, Ching-Hsiang HU, Wei-Ding WU, Jui-Chun WENG, Ji-Hong CHIANG, Hsi-Cheng HSU
  • Publication number: 20230401885
    Abstract: Optical sensors and their making methods are described herein. In some embodiments, a described sensing apparatus includes: an image sensor; a collimator above the image sensor, wherein the collimator includes an array of apertures; and an optical filtering layer above the collimator, wherein the optical filtering layer is configured to filter a portion of light to be transmitted into the array of apertures.
    Type: Application
    Filed: August 10, 2023
    Publication date: December 14, 2023
    Inventors: You-Cheng JHANG, Han-Zong PAN, Wei-Ding WU, Jiu-Chun WENG, Hsin-Yu CHEN, Cheng-San CHOU, Chin-Min LIN
  • Publication number: 20230359056
    Abstract: Disclosed is a method to fabricate a multifunctional collimator structure In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; and a plurality of via holes, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction, wherein the substrate has a bulk impurity doping concentration equal to or greater than 1×1019 per cubic centimeter (cm?3) and a first thickness, and wherein the bulk impurity doping concentration and the first thickness of the substrate are configured so as to allow the optical collimator to filter light in a range of wavelengths.
    Type: Application
    Filed: July 14, 2023
    Publication date: November 9, 2023
    Inventors: Hsin-Yu CHEN, Chun-Peng LI, Chia-Chun HUNG, Ching-Hsiang HU, Wei-Ding WU, Jui-Chun WENG, JI-Hong CHIANG, Yen-Chiang LIU, Jiun-Jie CHIOU, Li-Yang TU, Jia-Syuan LI, You-Cheng JHANG, Shin-Hua CHEN, Lavanya SANAGAVARAPU, Han-Zong PAN, Hsi-Cheng HSU
  • Patent number: 11782284
    Abstract: Disclosed is a cost-effective method to fabricate a multifunctional collimator structure for contact image sensors to filter ambient infrared light to reduce noises. In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; a plurality of via holes; and a conductive layer, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: October 10, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yu Chen, Yen-Chiang Liu, Jiun-Jie Chiou, Jia-Syuan Li, You-Cheng Jhang, Shin-Hua Chen, Lavanya Sanagavarapu, Han-Zong Pan, Chun-Peng Li, Chia-Chun Hung, Ching-Hsiang Hu, Wei-Ding Wu, Jui-Chun Weng, Ji-Hong Chiang, Hsi-Cheng Hsu
  • Patent number: 11726342
    Abstract: Disclosed is a method to fabricate a multifunctional collimator structure In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; and a plurality of via holes, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction, wherein the substrate has a bulk impurity doping concentration equal to or greater than 1×1019 per cubic centimeter (cm?3) and a first thickness, and wherein the bulk impurity doping concentration and the first thickness of the substrate are configured so as to allow the optical collimator to filter light in a range of wavelengths.
    Type: Grant
    Filed: August 4, 2022
    Date of Patent: August 15, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yu Chen, Chun-Peng Li, Chia-Chun Hung, Ching-Hsiang Hu, Wei-Ding Wu, Jui-Chun Weng, Ji-Hong Chiang, Yen Chiang Liu, Jiun-Jie Chiou, Li-Yang Tu, Jia-Syuan Li, You-Cheng Jhang, Shin-Hua Chen, Lavanya Sanagavarapu, Han-Zong Pan, Hsi-Cheng Hsu
  • Publication number: 20230092567
    Abstract: Optical sensors and their making methods are described herein. In some embodiments, a described sensing apparatus includes: an image sensor; a collimator above the image sensor, wherein the collimator includes an array of apertures; and an optical filtering layer above the collimator, wherein the optical filtering layer is configured to filter a portion of light to be transmitted into the array of apertures.
    Type: Application
    Filed: November 23, 2022
    Publication date: March 23, 2023
    Inventors: You-Cheng JHANG, Han-Zong PAN, Wei-Ding WU, Jiu-Chun WENG, Hsin-Yu CHEN, Cheng-San CHOU, Chin-Min LIN
  • Publication number: 20220382069
    Abstract: Disclosed is a cost-effective method to fabricate a multifunctional collimator structure for contact image sensors to filter ambient infrared light to reduce noises. In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; a plurality of via holes; and a conductive layer, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction, and wherein the conductive layer is formed over at least one of the following: the first surface of the first dielectric layer and a portion of sidewalls of each of the plurality of via holes, and wherein the conductive layer is configured so as to allow the optical collimator to filter light in a range of wavelengths.
    Type: Application
    Filed: August 8, 2022
    Publication date: December 1, 2022
    Inventors: Hsin-Yu CHEN, Yen-Chiang Liu, Jiun-Jie Chiou, Jia-Syuan Li, You-Cheng Jhang, Shin-Hua Chen, Lavanya Sanagavarapu, Han-Zong Pan, Chun-Peng Li, Chia-Chun Hung, Ching-Hsiang Hu, Wei-Ding Wu, Jui-Chun Weng, Ji-Hong Chiang, Hsi-Cheng Hsu
  • Patent number: 11514707
    Abstract: Optical sensors and their making methods are described herein. In some embodiments, a described sensing apparatus includes: an image sensor; a collimator above the image sensor, wherein the collimator includes an array of apertures; and an optical filtering layer above the collimator, wherein the optical filtering layer is configured to filter a portion of light to be transmitted into the array of apertures.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: November 29, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: You-Cheng Jhang, Han-Zong Pan, Wei-Ding Wu, Jui-Chun Weng, Hsin-Yu Chen, Cheng-San Chou, Chin-Min Lin
  • Publication number: 20220373815
    Abstract: Disclosed is a method to fabricate a multifunctional collimator structure In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; and a plurality of via holes, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction, wherein the substrate has a bulk impurity doping concentration equal to or greater than 1×1019 per cubic centimeter (cm?3) and a first thickness, and wherein the bulk impurity doping concentration and the first thickness of the substrate are configured so as to allow the optical collimator to filter light in a range of wavelengths.
    Type: Application
    Filed: August 4, 2022
    Publication date: November 24, 2022
    Inventors: Hsin-Yu CHEN, Chun-Peng LI, Chia-Chun HUNG, Ching-Hsiang HU, Wei-Ding WU, Jui-Chun WENG, Ji-Hong CHIANG, Yen-Chiang LIU, Jiun-Jie CHIOU, Li-Yang TU, Jia-Syuan LI, You-Cheng JHANG, Shin-Hua CHEN, Lavanya SANAGAVARAPU, Han-Zong PAN, Hsi-Cheng HSU
  • Publication number: 20220348454
    Abstract: The present disclosure relates to a micro-electromechanical system (MEMS) structure including one or more semiconductor devices arranged on or within a first substrate and a MEMS substrate having an ambulatory element. The MEMS substrate is connected to the first substrate by a conductive bonding structure. A capping substrate is arranged on the MEMs substrate. The capping substrate includes a semiconductor material that is separated from the first substrate by the MEMS substrate. One or more conductive polysilicon vias include a polysilicon material that continuously extends from the conductive bonding structure, completely through the MEMS substrate, and to within the capping substrate. The semiconductor material of the capping substrate covers opposing sidewalls of the polysilicon material and an upper surface of the polysilicon material that is between the opposing sidewalls.
    Type: Application
    Filed: June 29, 2022
    Publication date: November 3, 2022
    Inventors: Shyh-Wei Cheng, Chih-Yu Wang, Hsi-Cheng Hsu, Ji-Hong Chiang, Jui-Chun Weng, Shiuan-Jeng Lin, Wei-Ding Wu, Ching-Hsiang Hu
  • Patent number: 11454820
    Abstract: Disclosed is a cost-effective method to fabricate a multifunctional collimator structure for contact image sensors to filter ambient infrared light to reduce noises. In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; a plurality of via holes; and a conductive layer, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: September 27, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yu Chen, Yen-Chiang Liu, Jiun-Jie Chiou, Jia-Syuan Li, You-Cheng Jhang, Shin-Hua Chen, Lavanya Sanagavarapu, Han-Zong Pan, Chun-Peng Li, Chia-Chun Hung, Ching-Hsiang Hu, Wei-Ding Wu, Jui-Chun Weng, Ji-Hong Chiang, Hsi-Cheng Hsu
  • Patent number: 11448891
    Abstract: Disclosed is a method to fabricate a multifunctional collimator structure In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; and a plurality of via holes, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction, wherein the substrate has a bulk impurity doping concentration equal to or greater than 1×1019 per cubic centimeter (cm?3) and a first thickness, and wherein the bulk impurity doping concentration and the first thickness of the substrate are configured so as to allow the optical collimator to filter light in a range of wavelengths.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: September 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yu Chen, Chun-Peng Li, Chia-Chun Hung, Ching-Hsiang Hu, Wei-Ding Wu, Jui-Chun Weng, Ji-Hong Chiang, Yen-Chiang Liu, Jiun-Jie Chiou, Li-Yang Tu, Jia-Syuan Li, You-Cheng Jhang, Shin-Hua Chen, Lavanya Sanagavarapu, Han-Zong Pan, Hsi-Cheng Hsu
  • Patent number: 11407636
    Abstract: The present disclosure, in some embodiments, relates to a method of forming a micro-electromechanical system (MEMS) package. The method includes forming one or more depressions within a capping substrate. A back-side of a MEMS substrate is bonded to the capping substrate after forming the one or more depressions, so that the one or more depressions define one or more cavities between the capping substrate and the MEMS substrate. A front-side of the MEMS substrate is selectively etched to form one or more trenches extending through the MEMS substrate, and one or more polysilicon vias are formed within the one or more trenches. A conductive bonding structure is formed on the front-side of the MEMS substrate at a location contacting the one or more polysilicon vias. The MEMS substrate is bonded to a CMOS substrate having one or more semiconductor devices by way of the conductive bonding structure.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: August 9, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shyh-Wei Cheng, Chih-Yu Wang, Hsi-Cheng Hsu, Ji-Hong Chiang, Jui-Chun Weng, Shiuan-Jeng Lin, Wei-Ding Wu, Ching-Hsiang Hu
  • Publication number: 20220242724
    Abstract: A method for treating a micro electro-mechanical system (MEMS) component is disclosed. In one example, the method includes the steps of providing a first wafer, treating the first wafer to form cavities and at least an oxide layer on a top surface of the first wafer using a first chemical vapor deposition (CVD) process, providing a second wafer, bonding the second wafer on a top surface of the at least one oxide layer, treating the second wafer to form a first plurality of structures, depositing a layer of Self-Assembling Monolayer (SAM) to a surface of the MEMS component using a second CVD process.
    Type: Application
    Filed: April 13, 2022
    Publication date: August 4, 2022
    Inventors: Jui-Chun WENG, Lavanya SANAGAVARAPU, Ching-Hsiang HU, Wei-Ding WU, Shyh-Wei CHENG, Ji-Hong CHIANG, Hsin-Yu CHEN, Hsi-Cheng HSU
  • Patent number: 11305980
    Abstract: A method for treating a micro electro-mechanical system (MEMS) component is disclosed. In one example, the method includes the steps of providing a first wafer, treating the first wafer to form cavities and at least an oxide layer on a top surface of the first wafer using a first chemical vapor deposition (CVD) process, providing a second wafer, bonding the second wafer on a top surface of the at least one oxide layer, treating the second wafer to form a first plurality of structures, depositing a layer of Self-Assembling Monolayer (SAM) to a surface of the MEMS component using a second CVD process.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: April 19, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jui-Chun Weng, Lavanya Sanagavarapu, Ching-Hsiang Hu, Wei-Ding Wu, Shyh-Wei Cheng, Ji-Hong Chiang, Hsin-Yu Chen, Hsi-Cheng Hsu
  • Publication number: 20210116714
    Abstract: Disclosed is a cost-effective method to fabricate a multifunctional collimator structure for contact image sensors to filter ambient infrared light to reduce noises. In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; a plurality of via holes; and a conductive layer, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction, and wherein the conductive layer is formed over at least one of the following: the first surface of the first dielectric layer and a portion of sidewalls of each of the plurality of via holes, and wherein the conductive layer is configured so as to allow the optical collimator to filter light in a range of wavelengths.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 22, 2021
    Inventors: Hsin-Yu CHEN, Yen-Chiang LIU, Jiun-Jie CHIOU, Jia-Syuan LI, You-Cheng JHANG, Shin-Hua CHEN, Lavanya SANAGAVARAPU, Han-Zong PAN, Chun-Peng LI, Chia-Chun HUNG, Ching-Hsiang HU, Wei-Ding WU, Jui-Chun WENG, Ji-Hong CHIANG, Hsi-Cheng HSU
  • Publication number: 20210116713
    Abstract: Disclosed is a method to fabricate a multifunctional collimator structure In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; and a plurality of via holes, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction, wherein the substrate has a bulk impurity doping concentration equal to or greater than 1×1019 per cubic centimeter (cm?3) and a first thickness, and wherein the bulk impurity doping concentration and the first thickness of the substrate are configured so as to allow the optical collimator to filter light in a range of wavelengths.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 22, 2021
    Inventors: Hsin-Yu CHEN, Chun-Peng LI, Chia-Chun HUNG, Ching-Hsiang HU, Wei-Ding WU, Jui-Chun WENG, Ji-Hong CHIANG, Yen-Chiang LIU, Jiun-Jie CHIOU, Li-Yang TU, Jia-Syuan LI, You-Cheng JHANG, Shin-Hua CHEN, Lavanya SANAGAVARAPU, Han-Zong PAN, Hsi-Cheng HSU
  • Publication number: 20200387686
    Abstract: Optical sensors and their making methods are described herein. In some embodiments, a described sensing apparatus includes: an image sensor; a collimator above the image sensor, wherein the collimator includes an array of apertures; and an optical filtering layer above the collimator, wherein the optical filtering layer is configured to filter a portion of light to be transmitted into the array of apertures.
    Type: Application
    Filed: May 7, 2020
    Publication date: December 10, 2020
    Inventors: You-Cheng JHANG, Han-Zong PAN, Wei-Ding WU, Jiu-Chun WENG, Hsin-Yu CHEN, Chen-San CHOU, Chin-Min LIN
  • Publication number: 20200123003
    Abstract: A method for treating a micro electro-mechanical system (MEMS) component is disclosed. In one example, the method includes the steps of providing a first wafer, treating the first wafer to form cavities and at least an oxide layer on a top surface of the first wafer using a first chemical vapor deposition (CVD) process, providing a second wafer, bonding the second wafer on a top surface of the at least one oxide layer, treating the second wafer to form a first plurality of structures, depositing a layer of Self-Assembling Monolayer (SAM) to a surface of the MEMS component using a second CVD process.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 23, 2020
    Inventors: Jui-Chun Weng, Lavanya Sanagavarapu, Ching-Hsiang Hu, Wei-Ding Wu, Shyh-Wei Cheng, Ji-Hong Chiang, Hsin-Yu Chen, Hsi-Cheng Hsu