Patents by Inventor Wei-E Wang

Wei-E Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170338328
    Abstract: A method to form a nanosheet stack for a semiconductor device includes forming a stack of a plurality of sacrificial layers and at least one channel layer on an underlayer in which a sacrificial layer is in contact with the underlayer, each channel layer being in contact with at least one sacrificial layer, the sacrificial layers are formed from SiGe and the at least one channel layer is formed from Si; forming at least one source/drain trench region in the stack to expose surfaces of the SiGe sacrificial layers and a surface of the at least one Si channel layer; and oxidizing the exposed surfaces of the SiGe sacrificial layers and the exposed surface of the at least one Si layer in an environment of wet oxygen, or ozone and UV.
    Type: Application
    Filed: September 26, 2016
    Publication date: November 23, 2017
    Inventors: Wei-E WANG, Mark S. RODDER, Borna J. OBRADOVIC, Dharmendar Reddy PALLE, Joon Goo HONG
  • Patent number: 9812449
    Abstract: A nanosheet field effect transistor design in which the threshold voltage is adjustable by adjusting the composition of the gate. The channel of the nanosheet field effect transistor may be composed of a III-V semiconductor material, and the gate, which may be separated from the channel by a high dielectric constant dielectric layer, may also be composed of a III-V semiconductor material. Adjusting the composition of the gate may result in a change in the affinity of the gate, in turn resulting in a change in the threshold voltage. In some embodiments the channel is composed, for example, of InxGa1-xAs, with x between 0.23 and 0.53, and the gate is composed of InAs1-yNy with y between 0.0 and 0.4, and the values of x and y may be adjusted to adjust the threshold voltage.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: November 7, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Borna J. Obradovic, Titash Rakshit, Mark S. Rodder, Wei-E Wang
  • Patent number: 9793403
    Abstract: Multi-layer fin field effect transistor devices and methods of forming the same are provided. The devices may include a fin shaped channel structure on a substrate. The channel structure may include stressor layers stacked on the substrate and a channel layer between the stressor layers, and the stressor layers may include a semiconductor material having a wide bandgap that is sufficient to confine carriers to the channel layer and having a lattice constant different from a lattice constant of the channel layer to induce stress in the channel layer. The devices may also include source/drain regions on respective first opposing sides of the channel structure and a gate on second opposing sides of the channel structure and between the source/drain regions.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: October 17, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Borna J. Obradovic, Robert C. Bowen, Titash Rakshit, Wei-E Wang, Mark S. Rodder
  • Patent number: 9773906
    Abstract: Methods of forming a layer of silicon germanium include forming an epitaxial layer of Si1-xGex on a silicon substrate, wherein the epitaxial layer of Si1-xGex has a thickness that is less than a critical thickness, hc, at which threading dislocations form in Si1-xGex on silicon; etching the epitaxial layer of Si1-xGex to form Si1-xGex pillars that define a trench in the epitaxial layer of Si1-xGex, wherein the trench has a height and a width, wherein the trench has an aspect ratio of height to width of at least 1.5; and epitaxially growing a suspended layer of Si1-xGex from upper portions of the Si1-xGex pillars, wherein the suspended layer defines an air gap in the trench beneath the suspended layer of Si1-xGex.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: September 26, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Wei-E Wang, Mark S. Rodder, Ganesh Hedge, Christopher Bowen
  • Publication number: 20170271514
    Abstract: A method of manufacturing a nanosheet or nanowire device from a stack including an alternating arrangement of sacrificial layers and channel layers on a substrate. The method includes deep etching portions of the stack to form electrode recesses for a source electrode and a drain electrode, forming conductive passivation layers in the electrode recesses, and epitaxially growing the source and drain electrodes in the electrode recesses. Each conductive passivation layer extends at least partially along a side of one of the electrode recesses. Portions of the substrate at lower ends of the electrode recesses are uncovered by the conductive passivation layers. The source and drain electrodes are grown from the substrate and the conductive passivation layers substantially inhibit the source and drain electrodes from being grown from the channel layers.
    Type: Application
    Filed: November 1, 2016
    Publication date: September 21, 2017
    Inventors: Jorge A. Kittl, Wei-E Wang, Mark S. Rodder
  • Patent number: 9698234
    Abstract: Exemplary embodiments provide for fabricating a field effect transistor (FET) with an interface layer for a gate stack using an O3 post treatment. Aspects of the exemplary embodiments include: forming a semiconductor body upon a substrate; cleaning the surface of the semiconductor body; depositing a first dielectric layer on the semiconductor body; performing an O3 treatment to form a new interface layer that incorporates material from the substrate and material from the first dielectric layer; and performing gate stack processing, including deposition of a gate electrode.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: July 4, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jorge A. Kittl, Mark S. Rodder, Wei-E Wang
  • Patent number: 9691860
    Abstract: A strain-relieved buffer is formed by forming a first silicon-germanium (SiGe) layer directly on a surface of a bulk silicon (Si) substrate. The first SiGe layer is patterned to form at least two SiGe structures so there is a space between the SiGe structures. An oxide is formed on the SiGe structures, and the SiGe structures are mesa annealed. The oxide is removed to expose a top portion of the SiGe structures. A second SiGe layer is formed on the exposed portion of the SiGe structures so that the second SiGe layer covers the space between the SiGe structures, and so that a percentage Ge content of the first and second SiGe layers are substantially equal. The space between the SiGe structures is related to the sizes of the structures adjacent to the space and an amount of stress relief that is associated with the structures.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: June 27, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Wei-E Wang, Mark S. Rodder, Rwik Sengupta
  • Publication number: 20170148787
    Abstract: A nanosheet field effect transistor design in which the threshold voltage is adjustable by adjusting the composition of the gate. The channel of the nanosheet field effect transistor may be composed of a III-V semiconductor material, and the gate, which may be separated from the channel by a high dielectric constant dielectric layer, may also be composed of a III-V semiconductor material. Adjusting the composition of the gate may result in a change in the affinity of the gate, in turn resulting in a change in the threshold voltage. In some embodiments the channel is composed, for example, of InxGa1-xAs, with x between 0.23 and 0.53, and the gate is composed of InAs1-yNy with y between 0.0 and 0.4, and the values of x and y may be adjusted to adjust the threshold voltage.
    Type: Application
    Filed: May 18, 2016
    Publication date: May 25, 2017
    Inventors: Borna J. Obradovic, Titash Rakshit, Mark S. Rodder, Wei-E Wang
  • Publication number: 20170098661
    Abstract: A semiconductor device includes a series of metal routing layers and a complementary pair of planar field-effect transistors (FETs) on an upper metal routing layer of the metal routing layers. The upper metal routing layer is M3 or higher. Each of the FETs includes a channel region of a crystalline material. The crystalline material may include one or more transition metal dichalcogenide materials such as MoS2, WS2, WSe2, and/or combinations thereof.
    Type: Application
    Filed: July 14, 2016
    Publication date: April 6, 2017
    Inventors: Titash Rakshit, Borna J. Obradovic, Rwik Sengupta, Wei-E Wang, Ryan Hatcher, Mark S. Rodder
  • Publication number: 20170040209
    Abstract: Methods of forming nanosheets for a semiconductor device are provided including providing a silicon on insulator (SOI) handle wafer, the SOT handle wafer including a silicon layer and a dielectric layer on the silicon layer; providing a first donor wafer; bonding the SOI handle wafer and the first donor wafer together to provide a bonded structure; debonding the bonded structure to provide an intermediate wafer including a plurality of silicon or non-silicon nano sheets and a plurality of dielectric layers alternately stacked; and bonding the intermediate wafer to a second donor wafer to provide a final wafer including a plurality of silicon or non-silicon layers and a plurality of dielectric layers alternately stacked, wherein the final wafer includes at least one more pair of silicon or non-silicon and dielectric layers than the intermediate wafer.
    Type: Application
    Filed: March 10, 2016
    Publication date: February 9, 2017
    Inventors: Wei-E Wang, Mark Rodder, Borna Obradovic
  • Publication number: 20160322493
    Abstract: Methods of forming a layer of silicon germanium include forming an epitaxial layer of Si1-xGex on a silicon substrate, wherein the epitaxial layer of Si1-xGex has a thickness that is less than a critical thickness, hc, at which threading dislocations form in Si1-xGex on silicon; etching the epitaxial layer of Si1-xGex to form Si1-xGex pillars that define a trench in the epitaxial layer of Si1-xGex, wherein the trench has a height and a width, wherein the trench has an aspect ratio of height to width of at least 1.5; and epitaxially growing a suspended layer of Si1-xGex from upper portions of the Si1-xGex pillars, wherein the suspended layer defines an air gap in the trench beneath the suspended layer of Si1-xGex.
    Type: Application
    Filed: January 20, 2016
    Publication date: November 3, 2016
    Inventors: Wei-E Wang, Mark S. Rodder, Ganesh Hedge, Christopher Bowen
  • Publication number: 20160308055
    Abstract: Multi-layer fin field effect transistor devices and methods of forming the same are provided. The devices may include a fin shaped channel structure on a substrate. The channel structure may include stressor layers stacked on the substrate and a channel layer between the stressor layers, and the stressor layers may include a semiconductor material having a wide bandgap that is sufficient to confine carriers to the channel layer and having a lattice constant different from a lattice constant of the channel layer to induce stress in the channel layer. The devices may also include source/drain regions on respective first opposing sides of the channel structure and a gate on second opposing sides of the channel structure and between the source/drain regions.
    Type: Application
    Filed: February 26, 2016
    Publication date: October 20, 2016
    Inventors: BORNA J. OBRADOVIC, ROBERT C. BOWEN, TITASH RAKSHIT, WEI-E WANG, MARK S. RODDER
  • Patent number: 9343303
    Abstract: Methods of forming strain-relaxing semiconductor layers are provided in which a porous region is formed in a surface of a semiconductor substrate. A first semiconductor layer that is lattice-matched with the semiconductor substrate is formed on the porous region. A second semiconductor layer is formed on the first semiconductor layer, the second semiconductor layer being a strained layer as formed. The second semiconductor layer is then relaxed.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: May 17, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Wei-E Wang, Mark Stephen Rodder
  • Publication number: 20160071729
    Abstract: Exemplary embodiments provide methods for fabricating a nanosheet structure suitable for field-effect transistor (FET) fabrication. Aspects of exemplary embodiment include selecting an active material that will serve as a channel material in the nanosheet structure, a substrate suitable for epitaxial growth of the active material, and a sacrificial material to be used during fabrication of the nanosheet structure; growing a stack of alternating layers of active and sacrificial materials over the substrate; and selectively etching the sacrificial material, wherein due to the properties of the sacrificial material, the selective etch results in remaining layers of active material having an aspect ratio greater than 1 and substantially a same thickness and atomic smoothness along the entire cross-sectional width of each active material layer perpendicular to current flow.
    Type: Application
    Filed: August 19, 2015
    Publication date: March 10, 2016
    Inventors: Ryan M. Hatcher, Robert C. Bowen, Wei-E Wang, Mark S. Rodder
  • Publication number: 20160042956
    Abstract: Exemplary embodiments provide for fabricating a field effect transistor (FET) with an interface layer for a gate stack using an O3 post treatment. Aspects of the exemplary embodiments include: forming a semiconductor body upon a substrate; cleaning the surface of the semiconductor body; depositing a first dielectric layer on the semiconductor body; performing an O3 treatment that mixes with and penetrates the first dielectric layer and reacts with the semiconductor body to form a new interface layer; and performing gate stack processing, including deposition of a gate electrode.
    Type: Application
    Filed: March 24, 2015
    Publication date: February 11, 2016
    Inventors: Jorge A. Kittl, Mark S. Rodder, Wei-E Wang
  • Patent number: 9218964
    Abstract: Methods of manufacturing a III-V compound semiconductor material, and the semiconductor material thus manufactured, are disclosed. In one embodiment, the method comprises providing a substrate comprising a first semiconductor material having a {001} orientation and an insulating layer overlaying the first semiconductor material. The insulating layer comprises a recessed region exposing an exposed region of the first semiconductor material. The method further comprises forming a buffer layer overlaying the exposed region that comprises a group IV semiconductor material. The method further comprises thermally annealing the substrate and the buffer layer, thereby roughening the buffer layer to create a rounded, double-stepped surface having a step density and a step height. A product of the step density and the step height is greater than or equal to 0.05 on the surface.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: December 22, 2015
    Assignees: IMEC, Katholieke Universiteit Leuven, KU Leuven R&D
    Inventors: Gang Wang, Matty Caymax, Maarten Leys, Wei-e Wang, Niamh Waldron
  • Publication number: 20150318355
    Abstract: A strain-relieved buffer is formed by forming a first silicon-germanium (SiGe) layer directly on a surface of a bulk silicon (Si) substrate. The first SiGe layer is patterned to form at least two SiGe structures so there is a space between the SiGe structures. An oxide is formed on the SiGe structures, and the SiGe structures are mesa annealed. The oxide is removed to expose a top portion of the SiGe structures. A second SiGe layer is formed on the exposed portion of the SiGe structures so that the second SiGe layer covers the space between the SiGe structures, and so that a percentage Ge content of the first and second SiGe layers are substantially equal. The space between the SiGe structures is related to the sizes of the structures adjacent to the space and an amount of stress relief that is associated with the structures.
    Type: Application
    Filed: April 28, 2015
    Publication date: November 5, 2015
    Inventors: Wei-E WANG, Mark S. RODDER, Rwik SENGUPTA
  • Publication number: 20150270120
    Abstract: Methods of forming strain-relaxing semiconductor layers are provided in which a porous region is formed in a surface of a semiconductor substrate. A first semiconductor layer that is lattice-matched with the semiconductor substrate is formed on the porous region. A second semiconductor layer is formed on the first semiconductor layer, the second semiconductor layer being a strained layer as formed. The second semiconductor layer is then relaxed.
    Type: Application
    Filed: September 12, 2014
    Publication date: September 24, 2015
    Inventors: Wei-E Wang, Mark Stephen Rodder
  • Patent number: 9064699
    Abstract: Methods of forming semiconductor patterns including reduced dislocation defects and devices formed using such methods are provided. The methods may include forming an oxide layer on a substrate and forming a recess in the oxide layer and the substrate. The methods may further include forming an epitaxially grown semiconductor pattern in the recess that contacts a sidewall of the substrate at an interface between the oxide layer and the substrate and defines an upper surface of a void in the recess in the substrate.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: June 23, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Wei-E Wang, Mark S. Rodder, Robert C. Bowen
  • Publication number: 20150093884
    Abstract: Methods of forming semiconductor patterns including reduced dislocation defects and devices formed using such methods are provided. The methods may include forming an oxide layer on a substrate and forming a recess in the oxide layer and the substrate. The methods may further include forming an epitaxially grown semiconductor pattern in the recess that contacts a sidewall of the substrate at an interface between the oxide layer and the substrate and defines an upper surface of a void in the recess in the substrate.
    Type: Application
    Filed: April 22, 2014
    Publication date: April 2, 2015
    Inventors: Wei-E Wang, Mark S. Rodder, Robert C. Bowen