Patents by Inventor Wei-Hao Huang

Wei-Hao Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250040213
    Abstract: A semiconductor structure includes a source/drain feature in the semiconductor layer. The semiconductor structure includes a dielectric layer over the source/drain feature. The semiconductor structure includes a silicide layer over the source/drain feature. The semiconductor structure includes a barrier layer over the silicide layer. The semiconductor structure includes a seed layer over the barrier layer. The semiconductor structure includes a metal layer between a sidewall of the seed layer and a sidewall of the dielectric layer, a sidewall of each of the silicide layer, the barrier layer, and the metal layer directly contacting the sidewall of the dielectric layer. The semiconductor structure includes a source/drain contact over the seed layer.
    Type: Application
    Filed: July 27, 2023
    Publication date: January 30, 2025
    Applicant: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Yi-Hsiang Chao, Peng-Hao Hsu, Yu-Shiuan Wang, Chi-Yuan Chen, Yu-Hsiang Liao, Chun-Hsien Huang, Hung-Chang Hsu, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai
  • Patent number: 12211871
    Abstract: The present disclosure relates to an integrated chip including a substrate and a pixel. The pixel includes a photodetector. The photodetector is in the substrate. The integrated chip further includes a first inner trench isolation structure and an outer trench isolation structure that extend into the substrate. The first inner trench isolation structure laterally surrounds the photodetector in a first closed loop. The outer trench isolation structure laterally surrounds the first inner trench isolation structure along a boundary of the pixel in a second closed loop and is laterally separated from the first inner trench isolation structure. Further, the integrated chip includes a scattering structure that is defined, at least in part, by the first inner trench isolation structure and that is configured to increase an angle at which radiation impinges on the outer trench isolation structure.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: January 28, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu, Chih-Kung Chang
  • Patent number: 12211587
    Abstract: A memory device including a first memory cell, a first tracking cell, a tracking bit line, a second tracking cell and a word line driver. The first memory cell is configured to receive a first word line signal. The first tracking cell is configured to emulate the first memory cell. The tracking bit line is configured to transmit a tracking bit line signal to the first tracking cell. The second tracking cell is configured to adjust the tracking bit line signal according to the first word line signal. The word line driver is configured to adjust the first word line signal according to the tracking bit line signal and a first distance between the second tracking cell and a common node on the tracking bit line.
    Type: Grant
    Filed: June 16, 2023
    Date of Patent: January 28, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Hsien Huang, Wei-Jer Hsieh, Yu-Hao Hsu
  • Publication number: 20250017199
    Abstract: A biomimetic waterfowl includes a housing, two waterfowl legs, and a driving module. The waterfowl legs are spaced apart from each other in a left-right direction and are mounted to a bottom portion of the housing. Each waterfowl leg includes a first segment mounted to the housing and rotatable about a first axis parallel to the left-right direction, and a second segment rotatable about a second axis parallel to the first axis. The driving module is mounted to the housing and is configured to drive the waterfowl legs. Each of the waterfowl legs is movable between a retracted state, where the first segment extends forwardly from the housing and the second segment extends rearwardly from the first segment, and a propelling state, where the first segment extends rearwardly from the housing and the second segment extends rearwardly from the first segment.
    Type: Application
    Filed: December 5, 2023
    Publication date: January 16, 2025
    Inventors: Wei-Yu HUANG, Chang-Qi ZHANG, Guan-Hao PAN, Li-Yuan YEH, Tai-Yu CHEN, Ching-Hung LIU, Chih-Wei SHEN, Ching-Shu LAI
  • Publication number: 20240139531
    Abstract: Apparatus and methods for generating pulse pacing in a wearable cardioverter defibrillator (“WCD”). In one aspect the WCD circuitry includes a power source such as a battery coupled to a charger that provides charge energy to an energy storage module. Control circuitry is operatively coupled to the charger and the output circuitry, and configured to cause the WCD circuitry to generate pacing pulses delivered to therapy electrodes (attached to an ambulatory patient) without a current source. The WCD circuitry includes one or more processing elements that are used to execute instructions provided by one or more software modules that are configured to support various functionality, including controlling generation of pacing pulses.
    Type: Application
    Filed: August 8, 2023
    Publication date: May 2, 2024
    Applicant: West Affum Holdings DAC
    Inventors: David P. Finch, Leo J. Gilbert, Joseph L. Sullivan, Jaeho Kim, John Wei-Hao Huang, Brian J. Bennett, Kenneth F. Cowan
  • Patent number: 11899188
    Abstract: An optical lens system includes, in order from a magnified side to a minified side, a first lens group of positive refractive power and a second lens group of positive refractive power. The first lens group includes a first lens and a second lens, and the second lens group includes a third lens and a fourth lens. One of the third lens and the fourth lens includes one aspheric surface, and each of the lenses in the optical lens system is a singlet lens. The optical lens satisfies a condition of TE(?=400)>94%, where TE(?=400) denotes an overall transmittance of all of the lenses in the optical lens system measured at a wavelength of 400 nm.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: February 13, 2024
    Assignee: YOUNG OPTICS INC.
    Inventors: Hung-You Cheng, Yu-Hung Chou, Ching-Lung Lai, Yi-Hua Lin, Wei-Hao Huang
  • Patent number: 11881409
    Abstract: A method of cutting fins includes the following steps. A photomask including a snake-shape pattern is provided. A photoresist layer is formed over fins on a substrate. A photoresist pattern in the photoresist layer corresponding to the snake-shape pattern is formed by exposing and developing. The fins are cut by transferring the photoresist pattern and etching cut parts of the fins.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: January 23, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wei-Hao Huang, Chun-Lung Chen, Kun-Yuan Liao, Lung-En Kuo, Chia-Wei Hsu
  • Patent number: 11862727
    Abstract: The invention provides a method for fabricating a fin structure for fin field effect transistor, including following steps. Providing a substrate, including a fin structure having a silicon fin and a single mask layer just on a top of the silicon fin, the single mask layer being as a top portion of the fin structure. Forming a stress buffer layer on the substrate and conformally covering over the fin structure. Performing a nitridation treatment on the stress buffer layer to have a nitride portion. Perform a flowable deposition process to form a flowable dielectric layer to cover over the fin structures. Annealing the flowable dielectric layer. Polishing the flowable dielectric layer, wherein the nitride portion of the stress buffer layer is used as a polishing stop.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: January 2, 2024
    Assignee: United Microelectronics Corp.
    Inventors: Hao Che Feng, Hung Jen Huang, Hsin Min Han, Shih-Wei Su, Ming Shu Chiu, Pi-Hung Chuang, Wei-Hao Huang, Shao-Wei Wang, Ping Wei Huang
  • Patent number: 11853674
    Abstract: Methods and systems for IC photomask patterning are described. In some embodiments, a method includes inserting a dummy region in an IC design layout, the IC design layout includes an active region, and the active region and the dummy region is separated by a first distance. The method further includes performing one or more operations on the IC design layout, and the active region and the dummy region is separated by a second distance substantially less than the first distance. The method further includes performing a dummy region size reduction on the IC design layout to increase the second distance to a third distance substantially greater than the second distance, and the third distance is substantially greater than a minimum feature size to be patterned by a photolithography tool. The method further includes forming a photomask using the IC design layout.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Hao Huang, Chun Ting Lee, Cheng-Tse Lai
  • Publication number: 20230403946
    Abstract: A method for fabricating semiconductor device includes first forming a first magnetic tunneling junction (MTJ) and a second MTJ on a substrate, performing an atomic layer deposition (ALD) process or a high-density plasma (HDP) process to form a passivation layer on the first MTJ and the second MTJ, performing an etching process to remove the passivation layer adjacent to the first MTJ and the second MTJ, and then forming an ultra low-k (ULK) dielectric layer on the passivation layer.
    Type: Application
    Filed: August 28, 2023
    Publication date: December 14, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Tai-Cheng Hou, Wei-Xin Gao, Fu-Yu Tsai, Chin-Yang Hsieh, Chen-Yi Weng, Jing-Yin Jhang, Bin-Siang Tsai, Kun-Ju Li, Chih-Yueh Li, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Laio, Yu-Tsung Lai, Wei-Hao Huang
  • Publication number: 20230354715
    Abstract: A semiconductor device includes a first magnetic tunneling junction (MTJ) and a second MTJ on a substrate, a passivation layer on the first MTJ and the second MTJ, and an ultra low-k (ULK) dielectric layer on the passivation layer. Preferably, a top surface of the passivation layer between the first MTJ and the second MTJ is lower than a top surface of the passivation layer directly on top of the first MTJ.
    Type: Application
    Filed: June 27, 2023
    Publication date: November 2, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Tai-Cheng Hou, Wei-Xin Gao, Fu-Yu Tsai, Chin-Yang Hsieh, Chen-Yi Weng, Jing-Yin Jhang, Bin-Siang Tsai, Kun-Ju Li, Chih-Yueh Li, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Liao, Yu-Tsung Lai, Wei-Hao Huang
  • Publication number: 20230320229
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) on a substrate; forming a first ultra low-k (ULK) dielectric layer on the first MTJ; performing a first etching process to remove part of the first ULK dielectric layer and form a damaged layer on the first ULK dielectric layer; and forming a second ULK dielectric layer on the damaged layer.
    Type: Application
    Filed: May 10, 2023
    Publication date: October 5, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Tai-Cheng Hou, Wei-Xin Gao, Fu-Yu Tsai, Chin-Yang Hsieh, Chen-Yi Weng, Jing-Yin Jhang, Bin-Siang Tsai, Kun-Ju Li, Chih-Yueh Li, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Liao, Yu-Tsung Lai, Wei-Hao Huang
  • Patent number: 11778922
    Abstract: A method for fabricating semiconductor device includes first forming a first magnetic tunneling junction (MTJ) and a second MTJ on a substrate, performing an atomic layer deposition (ALD) process or a high-density plasma (HDP) process to form a passivation layer on the first MTJ and the second MTJ, performing an etching process to remove the passivation layer adjacent to the first MTJ and the second MTJ, and then forming an ultra low-k (ULK) dielectric layer on the passivation layer.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: October 3, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Tai-Cheng Hou, Wei-Xin Gao, Fu-Yu Tsai, Chin-Yang Hsieh, Chen-Yi Weng, Jing-Yin Jhang, Bin-Siang Tsai, Kun-Ju Li, Chih-Yueh Li, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Liao, Yu-Tsung Lai, Wei-Hao Huang
  • Patent number: 11737370
    Abstract: A semiconductor device includes a first magnetic tunneling junction (MTJ) and a second MTJ on a substrate, a passivation layer on the first MTJ and the second MTJ, and an ultra low-k (ULK) dielectric layer on the passivation layer. Preferably, a top surface of the passivation layer between the first MTJ and the second MTJ is lower than a top surface of the passivation layer directly on top of the first MTJ.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: August 22, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Tai-Cheng Hou, Wei-Xin Gao, Fu-Yu Tsai, Chin-Yang Hsieh, Chen-Yi Weng, Jing-Yin Jhang, Bin-Siang Tsai, Kun-Ju Li, Chih-Yueh Li, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Liao, Yu-Tsung Lai, Wei-Hao Huang
  • Patent number: 11706993
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) on a substrate; forming a first ultra low-k (ULK) dielectric layer on the first MTJ; performing a first etching process to remove part of the first ULK dielectric layer and forming a damaged layer on the first ULK dielectric layer; and forming a second ULK dielectric layer on the damaged layer.
    Type: Grant
    Filed: December 27, 2020
    Date of Patent: July 18, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Tai-Cheng Hou, Wei-Xin Gao, Fu-Yu Tsai, Chin-Yang Hsieh, Chen-Yi Weng, Jing-Yin Jhang, Bin-Siang Tsai, Kun-Ju Li, Chih-Yueh Li, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Liao, Yu-Tsung Lai, Wei-Hao Huang
  • Publication number: 20230135072
    Abstract: The invention provides a method for fabricating a fin structure for fin field effect transistor, including following steps. Providing a substrate, including a fin structure having a silicon fin and a single mask layer just on a top of the silicon fin, the single mask layer being as a top portion of the fin structure. Forming a stress buffer layer on the substrate and conformally covering over the fin structure. Performing a nitridation treatment on the stress buffer layer to have a nitride portion. Perform a flowable deposition process to form a flowable dielectric layer to cover over the fin structures. Annealing the flowable dielectric layer. Polishing the flowable dielectric layer, wherein the nitride portion of the stress buffer layer is used as a polishing stop.
    Type: Application
    Filed: December 29, 2022
    Publication date: May 4, 2023
    Applicant: United Microelectronics Corp.
    Inventors: Hao Che Feng, Hung Jen Huang, Hsin Min Han, Shih-Wei Su, Ming Shu Chiu, Pi-Hung Chuang, Wei-Hao Huang, Shao-Wei Wang, Ping Wei Huang
  • Publication number: 20230084002
    Abstract: A projection optical system with a concave reflector in the projection lens, comprising: an image source; a lens group; a reflector; an image and an aperture, the lens group and the reflector form multiple optical paths between the image and image source, each optical path has a chief ray and a marginal ray, the chief ray of one of the optical paths forms a chief ray of a paraxial image height at the part where image source be near to the optical axis, the chief ray of another one of the optical paths forms a marginal ray of an off-axis image height at the part where image source be far from the optical axis; wherein 2.2<F1/F2<3.0; 8<IMH/TR/Fno<19; 5<IMH*T1/T2<8. whereby the optimal optical performance of resolving power and optical path interference allowance will be achieved.
    Type: Application
    Filed: November 11, 2022
    Publication date: March 16, 2023
    Inventors: SHENG-CHE WU, YU-HUNG CHOU, WEI-HAO HUANG
  • Patent number: 11581438
    Abstract: The invention provides a fin structure for a fin field effect transistor, including a substrate. The substrate includes a plurality of silicon fins, wherein a top of each one of the silicon fins is a round-like shape in a cross-section view. An isolation layer is disposed on the substrate between the silicon fins at a lower portion of the silicon fins while an upper portion of the silicon fins is exposed. A stress buffer layer is disposed on a sidewall of the silicon fins between the isolation layer and the lower portion of the silicon fins. The stress buffer layer includes a nitride portion.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: February 14, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hao Che Feng, Hung Jen Huang, Hsin Min Han, Shih-Wei Su, Ming Shu Chiu, Pi-Hung Chuang, Wei-Hao Huang, Shao-Wei Wang, Ping Wei Huang
  • Publication number: 20230028023
    Abstract: Methods and systems for IC photomask patterning are described. In some embodiments, a method includes inserting a dummy region in an IC design layout, the IC design layout includes an active region, and the active region and the dummy region is separated by a first distance. The method further includes performing one or more operations on the IC design layout, and the active region and the dummy region is separated by a second distance substantially less than the first distance. The method further includes performing a dummy region size reduction on the IC design layout to increase the second distance to a third distance substantially greater than the second distance, and the third distance is substantially greater than a minimum feature size to be patterned by a photolithography tool. The method further includes forming a photomask using the IC design layout.
    Type: Application
    Filed: January 27, 2022
    Publication date: January 26, 2023
    Inventors: Wei-Hao HUANG, Chun Ting LEE, Cheng-Tse LAI
  • Patent number: D1059351
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: January 28, 2025
    Assignee: Garmin International, Inc.
    Inventors: Kevin Liu, Tai-Shun Huang, Wei-Hao Lian